Two partial cells, which are still forming into real cells
Carbon dioxide can be transported through the blood via three methods. It is dissolved directly in the blood, bound to plasma proteins or hemoglobin, or converted into bicarbonate.
The majority of carbon dioxide is transported as part of the bicarbonate system. Carbon dioxide diffuses into red blood cells. Inside, carbonic anhydrase converts carbon dioxide into carbonic acid (H2CO3), which is subsequently hydrolyzed into bicarbonate (HCO3−) and H+. The H+ ion binds to hemoglobin in red blood cells, and bicarbonate is transported out of the red blood cells in exchange for a chloride ion. This is called the chloride shift.
Bicarbonate leaves the red blood cells and enters the blood plasma. In the lungs, bicarbonate is transported back into the red blood cells in exchange for chloride. The H+ dissociates from hemoglobin and combines with bicarbonate to form carbonic acid with the help of carbonic anhydrase, which further catalyzes the reaction to convert carbonic acid back into carbon dioxide and water. The carbon dioxide is then expelled from the lungs.
Answer:
Alleles for feather colour exhibit incomplete dominance or co-dominance.
50% gray offspring + 50% black offspring
Explanation:
<em>It means that the alleles for feather colour in the hen exhibit incomplete dominance or co-dominance over one another.</em>
Assuming the allele for white colour is B, white colour will be b while the heterozygote Bb gives the gray phenotype.
Gray rooster + gray hen = 15 gray chicks, 6 black chicks and 8 white chicks.
15:6:8 is roughly 2:1:1 which is phenotypic ratio obtainable from crossing two heterozygous individuals as pointed out by Mendel.
Bb x Bb = 1BB, 2Bb, and 1bb
Crossing the gray rooster (Bb) with a black hen (bb):
Bb x bb = Bb, Bb, bb, and bb
= 2Bb (gray):2bb (black)
50% of the offspring will be gray while the remaining 50% will be black.
<span>Louis Pasteur, French scientist</span>
B is the best answer I hope it help