With cross multiplication you can find that they are the same. In both equations, x would be 100.
A) Find KM∠KEM is a right angle hence ΔKEM is a right angled triangle Using Pythogoras' theorem where the square of hypotenuse is equal to the sum of the squares of the adjacent sides we can answer the
KM² = KE² + ME²KM² = 8² + (3√5)² = 64 + 9x5KM = √109KM = 10.44
b)Find LMThe ratio of LM:KN is 3:5 hence if we take the length of one unit as xlength of LM is 3xand the length of KN is 5x ∠K and ∠N are equal making it a isosceles trapezoid. A line from L that cuts KN perpendicularly at D makes KE = DN
KN = LM + 2x 2x = KE + DN2x = 8+8x = 8LM = 3x = 3*8 = 24
c)Find KN Since ∠K and ∠N are equal, when we take the 2 triangles KEM and LDN, they both have the same height ME = LD.
∠K = ∠N Hence KE = DN the distance ED = LMhence KN = KE + ED + DN since ED = LM = 24and KE + DN = 16KN = 16 + 24 = 40
d)Find area KLMNArea of trapezium can be calculated using the formula below Area = 1/2 x perpendicular height between parallel lines x (sum of the parallel sides)substituting values into the general equationArea = 1/2 * ME * (KN+ LM) = 1/2 * 3√5 * (40 + 24) = 1/2 * 3√5 * 64 = 3 x 2.23 * 32 = 214.66 units²
Answer:
55.75
Step-by-step explanation:
find the area of 1 side using the base and height and divide that answer by 2
5x6=30 30 divided by 2=15
all sides are equal so each side is 15
the base you do the same thing.
base is 5, height is 4.3
4.3 x 5= 21.5
divide it by 2 10.75
side 1=15
side 2= 15
side 3=15
base 1= 10.75
add all together
55.75
The blank is -8 because -6 +-8=-14+-3=-17.