Answer:
x = √39
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Trigonometry</u>
- [Right Triangles Only] Pythagorean Theorem: a² + b² = c²
Step-by-step explanation:
<u>Step 1: Identify</u>
Leg <em>a</em> = <em>x</em>
Leg <em>b</em> = 5
Hypotenuse <em>c</em> = 8
<u>Step 2: Solve for </u><em><u>x</u></em>
- Substitute [PT]: x² + 5² = 8²
- Isolate <em>x</em> term: x² = 8² - 5²
- Exponents: x² = 64 - 25
- Subtract: x² = 39
- Isolate <em>x</em>: x = √39
I think this problem is 3
For the vectors u = ⟨2, 9⟩, v = ⟨4, –8⟩, and w = ⟨–12, 4⟩, what is u + v + w? ⟨6, 1⟩ ⟨6, 5⟩ ⟨-6, 5⟩ ⟨-6, 21⟩
Levart [38]
Answer:
< - 6, 5 >
Step-by-step explanation:
Add the corresponding components of each vector, that is
u + v + w
= < 2, 9 > + < 4, - 8 > + < - 12, 4 >
= > 2 + 4 - 12, 9 - 8 + 4 >
= < - 6, 5 >
Answer:
a = 5
Step-by-step explanation:
Answer:
Step-by-step explanation: L=W+3
2(W+3)+2W=24
2W+6+2W=24
4W=24-6
4W=18
W=18/4
W=4.5 ANSWER FOR THE WIDTH.
L=4.5+3
L=7.5 ANSWER FOR THE LENGTH.
PROOF
2*4.5=2*7.5=24
9+15=24
24=24