Answer:
≈ 4.0233...
Step-by-step explanation:
First we identify the function: ![f(x)=\sqrt[3]{x^{2} }](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx%5E%7B2%7D%20%7D)
then we take the firts derivative: ![f(x)=\frac{2}{3\sqrt[3]{x}}](https://tex.z-dn.net/?f=f%28x%29%3D%5Cfrac%7B2%7D%7B3%5Csqrt%5B3%5D%7Bx%7D%7D)
Then we take a starting point a=8, so the function has the value:
![f(8)=\sqrt[3]{8^{2} }=4](https://tex.z-dn.net/?f=f%288%29%3D%5Csqrt%5B3%5D%7B8%5E%7B2%7D%20%7D%3D4)
and the first derivative has the value:
![f(8)=\frac{2}{3\sqrt[3]{8}}=\frac{1}{3}](https://tex.z-dn.net/?f=f%288%29%3D%5Cfrac%7B2%7D%7B3%5Csqrt%5B3%5D%7B8%7D%7D%3D%5Cfrac%7B1%7D%7B3%7D)
Then consider the folowing relation:
f(x) ≈ f(a) + f'(a) (Δx); where Δx = x-a = 8.07-8 = 0.07
Finally we replace the values and find:
≈ 4 +(
* 0.07)
≈ 4.0233...