-16 and -1 multiply to be 16, but add to be -17
Answer:
x² + 2x + (3 / (x − 1))
Step-by-step explanation:
Start by setting up the division:
.........____________
x − 1 | x³ + x² − 2x + 3
Start with the first term, x³. Divided by x, that's x². So:
.........____x²______
x − 1 | x³ + x² − 2x + 3
Multiply x − 1 by x², subtract the result, and drop down the next term:
.........____x²______
x − 1 | x³ + x² − 2x + 3
.........-(x³ − x²)
...........----------
...................2x² − 2x
Repeat the process over again. First term is 2x². Divided by x is 2x. So:
.........____x² + 2x __
x − 1 | x³ + x² − 2x + 3
.........-(x³ − x²)
...........----------
...................2x² − 2x
Multiply, subtract the result, and drop down the next term:
.........____x² + 2x __
x − 1 | x³ + x² − 2x + 3
.........-(x³ − x²)
...........----------
...................2x² − 2x
.................-(2x² − 2x)
.................---------------
.....................................3
x doesn't divide into 3, so that's the remainder.
Therefore, the answer is:
x² + 2x + (3 / (x − 1))
First combine like terms ,
5/5x=9/5x
move the variable which will cancel out because it is the same
5=9 is no solution sorry if i’m wrong lol
If ABC and DEF are complementary, then the value of x will be,
90 - ABC = x
90 - 53 = x
x = 37°