Answer:
Perimeter = 18.7 units
Area = 13.5 units²
Step-by-step explanation:
Perimeter of ADEC = AD + DE + EC + AC
Length of AD = 3 units
By applying Pythagoras theorem in ΔDBE,
DE² = DB² + BE²
DE² = 3² + 3²
DE = √18
DE = 4.24 units
Length of EC = 3 units
By applying Pythagoras theorem in ΔABC,
AC² = AB² + BC²
AC² = 6² + 6²
AC = √72
AC = 8.49 units
Perimeter of ADEC = 3 + 4.24 + 3 + 8.49
= 18.73 units
≈ 18.7 units
Area of ADEC = Area of ΔABC - Area of ΔBDE
Area of ΔABC = 
= 
= 18 units²
Area of ΔBDE = 
= 
= 4.5 units²
Area of ADEC = 18 - 4.5
= 13.5 units²
Answer:
Step-by-step explanation:
Area of a Segment in Radians A = (½) × r2 (θ – Sin θ)
Area of a Segment in Degrees A = (½) × r 2 × [(π/180) θ – sin θ]
Subtract 4<span> from both sides
</span><span><span>y−4>−2x</span>
<span>Divide both sides by -2
</span>
x>-y-4/2
Question 2 - y>x-4
Add 4 to both sides
<span><span>y+4>x
Switch sides
</span>
<span><span>x<y+4</span><span>
</span></span></span>
</span>