Answer:
Parallel
Explanation:
An electric charge in a magnetic field will experience no force if the charge is moving parallel to the field.
If "during this time" refers to the 5 second interval mentioned above, then the average acceleration is

Notice that we took the start time to be the start of the 5 second interval and set that to
. The starting velocity
is the velocity measured at the start of the interval, and
is the velocity measured at its end.
So the average velocity over these 5 seconds is

Answer:
2 Hz.
Explanation:
Frequency is simply defined as the number of appearances of a periodic event occurring per time. It is usually measured in cycles/second.
Now, in this question, we are told that there are 2 cycles for each second.
Thus, we can say that the frequency is 2 cycles/1 s = 2 Hz.
Answer:
0.12
Explanation:
The acceleration due to gravity of a planet with mass M and radius R is given as:
g = (G*M) / R²
Where G is gravitational constant.
The mass of the planet M = 3 times the mass of earth = 3 * 5.972 * 10^24 kg
The radius of the planet R = 5 times the radius of earth = 5 * 6.371 * 10^6 m
Therefore:
g(planet) = (6.67 * 10^(-11) * 3 * 5.972 * 10^24) / (5 * 6.371 * 10^6)²
g(planet) = 1.18 m/s²
Therefore ratio of acceleration due to gravity on the surface of the planet, g(planet) to acceleration due to gravity on the surface of the planet, g(earth) is:
g(planet)/g(earth) = 1.18/9.8 = 0.12
(a) 120.8 m/s^2
The gravitational acceleration at a generic distance r from the centre of the planet is

where
G is the gravitational constant
M' is the mass enclosed by the spherical surface of radius r
r is the distance from the centre
For this part of the problem,

so the mass enclosed is just the mass of the core:

So the gravitational acceleration is

(b) 67.1 m/s^2
In this part of the problem,

and the mass enclosed here is the sum of the mass of the core and the mass of the shell, so

so the gravitational acceleration is
