Answer:
(a): a = 0.4m/s²
(b): α = 8 radians/s²
Explanation:
First we propose an equation to determine the linear acceleration and an equation to determine the space traveled in the ramp (5m):
a= (Vf-Vi)/t = (2m/s)/t
a: linear acceleration.
Vf: speed at the end of the ramp.
Vi: speed at the beginning of the ramp (zero).
d= (1/2)×a×t² = 5m
d: distance of the ramp (5m).
We replace the first equation in the second to determine the travel time on the ramp:
d = 5m = (1/2)×( (2m/s)/t)×t² = (1m/s)×t ⇒ t = 5s
And the linear acceleration will be:
a = (2m/s)/5s = 0.4m/s²
Now we determine the perimeter of the cylinder to know the linear distance traveled on the ramp in a revolution:
perimeter = π×diameter = π×0.1m = 0.3142m
To determine the angular acceleration we divide the linear acceleration by the radius of the cylinder:
α = (0.4m/s²)/(0.05m) = 8 radians/s²
α: angular aceleration.
<span>The answer is: ultraviolet
The energy (E) of a photon is directly proportional to its frequency f, by Planck's
formula: E = hf, where h is Planck's constant (6.625 * 10**-34 joule-second).
The frequency is inversely proportional to the wavelength w by: f = c/w, where
c is the speed of light, 3.0 * 10**8 meters per second.
Combine these formulas and we see that the energy is inversely proportional to
the wavelength by: E = hc/w
If the energy is inversely proportional to the wavelength, a photon with twice the
energy has half the wavelength of our 442-nm. photon in this example.
So its wavelength is 221 nm. which is in the ultraviolet range.</span>
The popular GPS devices that people use to find directions while driving use "Global Navigation Satellite System (GNSS)".
<u>Explanation:</u>
The umbrella term for all global satellite tracking systems is GNSS i.e Global Satellite Navigation System. This involves satellite constellations circulating over the surface of the earth and continuous signal transmission that allow users to evaluate their location.
A satellite array of 18–30 medium Earth Orbit (MEO) satellites distributed across several orbital planes typically achieves greater coverage for each network. The specific systems differ, but use > 50 ° orbital inclinations and approximately twelve hours orbital cycles.
Answer:
Power of the string wave will be equal to 5.464 watt
Explanation:
We have given mass per unit length is 0.050 kg/m
Tension in the string T = 60 N
Amplitude of the wave A = 5 cm = 0.05 m
Frequency f = 8 Hz
So angular frequency 
Velocity of the string wave is equal to 
Power of wave propagation is equal to 
So power of the wave will be equal to 5.464 watt
The amount of gold in decigrams if 450 micrograms is needed is 4.5 × 10-³ decigrams.
<h3>How to convert micrograms to decigrams?</h3>
According to this question, 450 micrograms of a sample of gold is needed but we only have a mass balance that measures in decigrams.
This means that we are to convert the amount of gold you need to decigrams by comparing the exponents.
The conversion factor of micrograms to decigrams is as follows:
1 micrograms = 1 × 10-⁵ decigrams
This means 450 micrograms is equivalent to 450 × 1 × 10-⁵ = 4.5 × 10-³ decigrams
Therefore, the amount of gold in decigrams if 450 micrograms is needed is 4.5 × 10-³ decigrams.
Learn more about decigrams at: brainly.com/question/6869599
#SPJ1