Answer:
(a) 2 feet.
(b) 2 feet.
Step-by-step explanation:
We have been given that the velocity function
in feet per second, is given for a particle moving along a straight line.
(a) We are asked to find the displacement over the interval
.
Since velocity is derivative of position function , so to find the displacement (position shift) from the velocity function, we need to integrate the velocity function.




Using power rule, we will get:
![\left[\frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}}\right] ^4_1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cfrac%7Bt%5E%7B-%5Cfrac%7B1%7D%7B2%7D%2B1%7D%7D%7B-%5Cfrac%7B1%7D%7B2%7D%2B1%7D%7D%5Cright%5D%20%5E4_1)
![\left[\frac{t^{\frac{1}{2}}}{\frac{1}{2}}}\right] ^4_1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cfrac%7Bt%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%5Cright%5D%20%5E4_1)

Therefore, the total displacement on the interval
would be 2 feet.
(b). For distance we need to integrate the absolute value of the velocity function.


Since square root is not defined for negative numbers, so our integral would be
.
We already figured out that the value of
is 2 feet, therefore, the total distance over the interval
would be 2 feet.