For the answer to the question above,
<span>r = 1 + cos θ
x = r cos θ
x = ( 1 + cos θ) cos θ
x = cos θ + cos^2 θ
dx/dθ = -sin θ + 2 cos θ (-sin θ)
dx/dθ = -sin θ - 2 cos θ sin θ
y = r sin θ
y = (1 + cos θ) sin θ
y = sin θ + cos θ sin θ
dy/dθ = cos θ - sin^2 θ + cos^2 θ
dy/dx = (dy/dθ) / (dx/dθ)
dy/dx = (cos θ - sin^2 θ + cos^2 θ)/ (-sin θ - 2 cos θ sin θ)
For horizontal tangent line, dy/dθ = 0
cos θ - sin^2 θ + cos^2 θ = 0
cos θ - (1-cos^2 θ) + cos^2 θ = 0
cos θ -1 + 2 cos^2 θ = 0
2 cos^2 θ + cos θ -1 = 0
Let y = cos θ
2y^2+y-1=0
2y^2+2y-y-1=0
2y(y+1)-1(y+1)=0
(y+1)(2y-1)=0
y=-1
y=1/2
cos θ =-1
θ = π
cos θ =1/2
θ = π/3 , 5π/3
θ = π/3 , π, 5π/3
when θ = π/3, r = 3/2
when θ = π, r = 0
when θ = 5π/3 , r = 3/2
(3/2, π/3) and (3/2, 5π/3) give horizontal tangent lines
</span>---------------------------------------------------------------------------------
For horizontal tangent line, dx/dθ = 0
<span>-sin θ - 2 cos θ sin θ = 0 </span>
<span>-sin θ (1+ 2 cos θ ) = 0 </span>
<span>sin θ = 0 </span>
<span>θ = 0, π </span>
<span>(1+ 2 cos θ ) =0 </span>
<span>cos θ =-1/2 </span>
<span>θ = 2π/3 </span>
<span>θ = 4π/3 </span>
<span>θ = 0, 2π/3 ,π, 4π/3 </span>
<span>when θ = 0, r=2 </span>
<span>when θ = 2π/3, r=1/2 </span>
<span>when θ = π, r=0 </span>
<span>when θ = 4π/3 , r=1/2 </span>
<span>(2,0) , (1/2, 2π/3) , (0, π), (1/2, 4π/3) </span>
<span>At (2,0) there is a vertical tangent line</span>
Answer:
3/3 or just 3.
Step-by-step explanation:
everytime the line crosses the x and y coordinates is basically a plot. so counting from the bottom left hand corner to the "plot" in the middle is 3/3 because it rises three and runs positive 3.
Answer:
Answer d (student needed to add the b value)
Step-by-step explanation:
I got it right
Attached picture below.
1.) y=2x^3+1 answer: nonlinear
2.) y=3x answer: linear
3.) y=(x/5) answer: linear
She has 7 million left. It's just basically 10-3 then you add the zeros.