The circle's area is 88.74<span>
</span>
Answer:
1.16
Step-by-step explanation:
Given that;
For some positive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770.
This implies that:
P(0<Z<z) = 0.3770
P(Z < z)-P(Z < 0) = 0.3770
P(Z < z) = 0.3770 + P(Z < 0)
From the standard normal tables , P(Z < 0) =0.5
P(Z < z) = 0.3770 + 0.5
P(Z < z) = 0.877
SO to determine the value of z for which it is equal to 0.877, we look at the
table of standard normal distribution and locate the probability value of 0.8770. we advance to the left until the first column is reached, we see that the value was 1.1. similarly, we did the same in the upward direction until the top row is reached, the value was 0.06. The intersection of the row and column values gives the area to the two tail of z. (i.e 1.1 + 0.06 =1.16)
therefore, P(Z ≤ 1.16 ) = 0.877
Hey there!
I'll assume we're using the slope-intercept form equation:
y = mx + b
m = slope
b = y-intercept
First, we keep the y, because it's value depends on the x value given.
Next, we find the slope. Slope is defined as rise/run, so we take two points on the graph, find how much taller one is from another, and how far right/left they are, put those values over each other, and we have out slope (m).
Finally, we need to determine the y-intercept, and that's as simple as seeing where the line crosses the y axis and writing down that value.
Hope this helps!
Answer:
52.94
Step-by-step explanation:
61.06
-46.92
=52.94
<em>just</em><em> </em><em>subtract</em><em> </em><em>them</em><em> </em><em>like</em><em> </em><em>the</em><em> </em><em>.</em><em> </em><em>isn't</em><em> </em><em>even</em><em> </em><em>there</em><em>.</em>
Answer:
(a) E(X) = -2p² + 2p + 2; d²/dp² E(X) at p = 1/2 is less than 0
(b) 6p⁴ - 12p³ + 3p² + 3p + 3; d²/dp² E(X) at p = 1/2 is less than 0
Step-by-step explanation:
(a) when i = 2, the expected number of played games will be:
E(X) = 2[p² + (1-p)²] + 3[2p² (1-p) + 2p(1-p)²] = 2[p²+1-2p+p²] + 3[2p²-2p³+2p(1-2p+p²)] = 2[2p²-2p+1] + 3[2p² - 2p³+2p-4p²+2p³] = 4p²-4p+2-6p²+6p = -2p²+2p+2.
If p = 1/2, then:
d²/dp² E(X) = d/dp (-4p + 2) = -4 which is less than 0. Therefore, the E(X) is maximized.
(b) when i = 3;
E(X) = 3[p³ + (1-p)³] + 4[3p³(1-p) + 3p(1-p)³] + 5[6p³(1-p)² + 6p²(1-p)³]
Simplification and rearrangement lead to:
E(X) = 6p⁴-12p³+3p²+3p+3
if p = 1/2, then:
d²/dp² E(X) at p = 1/2 = d/dp (24p³-36p²+6p+3) = 72p²-72p+6 = 72(1/2)² - 72(1/2) +6 = 18 - 36 +8 = -10
Therefore, E(X) is maximized.