Answer:
<em>The speed of sound at 20°C is 343.42 m/s.</em>
<em>You have to wait 1.75 seconds to hear the sound of the bat hitting the ball</em>
Step-by-step explanation:
<u>Speed of Sound</u>
The speed of sound is not constant with temperature. Generally speaking, the greater the temperature, the greater the speed of sound.
The approximate speed of sound in dry air at temperatures T near 0°C is calculated from:

The air is at T=20°C, thus the speed of sound is:


The speed of sound at 20°C is 343.42 m/s.
To calculate the time to hear the sound after the batter hits the ball, we use the formula of constant speed motion:

Where d is the distance and t is the time. Solving for t:

Substituting the values v=343.42 m/s and d=600 m:

t = 1.75 s
You have to wait 1.75 seconds to hear the sound of the bat hitting the ball
Answer:
53.82
Step-by-step explanation:
Answer:
B) a = 6.7, B = 36°, C = 49°
Step-by-step explanation:
Fill in the numbers in the Law of Cosines formula to find the value of "a".
a² = b² + c² -2bc·cos(A)
a² = 4² +5² -2(4)(5)cos(95°) ≈ 44.4862
a ≈ √44.4862 ≈ 6.66980
Now, the law of sines is used to find one of the remaining angles. The larger angle will be found from ...
sin(C)/c = sin(A)/a
sin(C) = (c/a)sin(A)
C = arcsin(5/6.6698×sin(95°)) ≈ 48.31°
The third angle is ...
B = 180° -A -C = 180° -95° -48.31° = 36.69°
The closest match to a = 6.7, B = 37°, C = 48° is answer choice B.