Mutations present permanent and heritable changes in the genome. We distinguish gene and chromosome mutations. Mutations in the level of genes are called point mutations because only one to several nucleotides are changed. These processes are known as deletion, insertion, and substitution. Deletion presents a loss of nucleotides which changes DNA sequence. When new nucleotides are embedded in the DNA chain, it is known as insertion. Substitution implies the process where new nucleotides are inserted while the ones that were present in that specific spot in a DNA molecule are deleted.
Mutations can also appear in chromosomes altering their number and structure. There are four types of mutations - deletion, duplication, inversion, and translocation. In deletion, a whole or one part of a chromosome is lost. Duplication presents an extra copy of a whole or one part of a chromosome. In an inversion, parts of a chromosome change order, while in translocation a part of one chromosome detaches and then connects to another.
hope this helps
Answer:
Mechanisms are activated where it is sought to lower the amount of free protons in the blood, that is, to reduce acidity, these mechanisms work between two large systems, the receptor system, the respiratory system and the renal system.
Explanation:
When a metabolic acidosis is entered, either by a food, or by a disease or even an intense physical activity, the lungs seek to generate hyperventilation, to increase the concentrations of oxygen in plasma and absolutely decrease the carbon dioxide concentration, thus not the blood becomes even more acidic.
On the other hand, the digestive system together with the sensory system, will warn this proprioception of the acidity of the plasma and will promote the dilution of these acids with a solvent, which is water, promoting the sensation of thirst.
Finally, the kidneys will seek to retain all the alkaline solutes to neutralize the physiological internal pH, and will release through the urine and the channels of acidic compounds, the products or acid metabolites to the external environment, that is, acid urine excretion.
Hi!
The correct option is B. Which genes are active.
Embryonic differentiation is a developmental process by which embryonic cells give rise to specialized cells and a diverse range of tissue structures. All of this unique cells essentially rise from a type of cells that are known as pluripotent cells.
But how do these pluripotent embryonic stem cells know which cells to differentiate into? This is where genes come into play. The cell has an inherent signalling ability that determines which gene is to be active and expressed. These specifically activated genes then translate into proteins for which it is specific, giving each cell, tissue and organ its particular identity.
Hope this helps!