1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harrizon [31]
3 years ago
13

Sam have 1 1/5 meters of rope he cut off 1/2 meters and use it for a project for school how much real does Sam have left

Mathematics
2 answers:
Yuri [45]3 years ago
7 0
Answer is 7/10

First you find the common denominator which is 10 from doing 5*2.

Then you do 1*2 to get 2 and then also 5*1 to get 5.

Now you have 5/10 - 2/10 = 3/10.

Then you combine the whole and fraction parts and get..

1 - 3/10 = 7/10

( 10-3=7)

BartSMP [9]3 years ago
4 0
Hope this helps also has the decimal

You might be interested in
Divide x^3 -3x^2 by x-2<br> . Step 1 - Fill in the missing number:
vagabundo [1.1K]

Answer:


Step-by-step explanation:

First let us write the given polynomial as in descending powers of x with 0 coefficients for missing items

F(x) = x^3-3x^2+0x+0

We have to divide this by x-2

Leading terms in the dividend and divisor are

x^3  and x

Hence quotient I term would be x^3/x=x^2

                                                   x-2) x^3-3x^2+0x+0(x^2

x^3-2x^2

Multiply x-2 by x square and write below the term and subtract

We get  

                                                   x-2) x^3-3x^2+0x+0(x^2

x^3-2x^2

                                                         ---------------

-x^2+0x

Again take the leading terms and find quotient is –x

                                                x-2) x^3-3x^2+0x+0(x^2-x

x^3-2x^2

                                                         ---------------

-x^2+0x

                                                                  -x^2-2x

Subtract to get 2x +0 as remainder.

                                                  x-2) x^3-3x^2+0x+0(x^2-x-2

x^3-2x^2

                                                         ---------------

-x^2+0x

                                                                  -x^2+2x

                                                          -------------

                                                                      -2x-0

                                                                              -2x+4

                                                             ------------------

                                                                               -4

Thus remainder is -4 and quotient is x^2-x-2


8 0
3 years ago
Read 2 more answers
I need help passing geometry
Lyrx [107]
Oh that’s so easy 6 grade math so I saw there’s no y intercept so just see where the point’s coordinates are
3 0
3 years ago
For the data set below identify the range of the data
tankabanditka [31]

Answer:

29

Step-by-step explanation:

Range is largest number subtracted with the smallest number. So it will be

63 - 34 which will give you 29

8 0
2 years ago
Read 2 more answers
Which congruence postulate or theorem shows that the triangles below are congruent?
saul85 [17]

Answer:

A. AAS

Step-by-step explanation:

5 0
3 years ago
D/d{cosec^-1(1+x²/2x)} is equal to​
SIZIF [17.4K]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{d}{dx} {cosec}^{ - 1} \bigg( \dfrac{1 +  {x}^{2} }{2x} \bigg)

Let assume that

\rm :\longmapsto\:y =  {cosec}^{ - 1} \bigg( \dfrac{1 +  {x}^{2} }{2x} \bigg)

We know,

\boxed{\tt{  {cosec}^{ - 1}x =  {sin}^{ - 1}\bigg( \dfrac{1}{x} \bigg)}}

So, using this, we get

\rm :\longmapsto\:y = sin^{ - 1} \bigg( \dfrac{2x}{1 +  {x}^{2} } \bigg)

Now, we use Method of Substitution, So we substitute

\red{\rm :\longmapsto\:x = tanz \: \rm\implies \:z =  {tan}^{ - 1}x}

So, above expression can be rewritten as

\rm :\longmapsto\:y = sin^{ - 1} \bigg( \dfrac{2tanz}{1 +  {tan}^{2} z} \bigg)

\rm :\longmapsto\:y = sin^{ - 1} \bigg( sin2z \bigg)

\rm\implies \:y = 2z

\bf\implies \:y = 2 {tan}^{ - 1}x

So,

\bf\implies \: {cosec}^{ - 1}\bigg( \dfrac{1 +  {x}^{2} }{2x} \bigg) = 2 {tan}^{ - 1}x

Thus,

\rm :\longmapsto\:\dfrac{d}{dx} {cosec}^{ - 1} \bigg( \dfrac{1 +  {x}^{2} }{2x} \bigg)

\rm \:  =  \: \dfrac{d}{dx}(2 {tan}^{ - 1}x)

\rm \:  =  \: 2 \: \dfrac{d}{dx}( {tan}^{ - 1}x)

\rm \:  =  \: 2 \times \dfrac{1}{1 +  {x}^{2} }

\rm \:  =  \: \dfrac{2}{1 +  {x}^{2} }

<u>Hence, </u>

\purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} {cosec}^{ - 1} \bigg( \dfrac{1 +  {x}^{2} }{2x} \bigg) =  \frac{2}{1 +  {x}^{2} }}}}

<u>Hence, Option (d) is </u><u>correct.</u>

6 0
2 years ago
Other questions:
  • A cube has a volume of 216 cubic inches. What is the length of each edge of the cube?
    12·2 answers
  • Can someone please help me with this math question
    10·1 answer
  • The volume of a cylinder of radius r and height h is given by V = π r 2 h. Then the height, in terms of the radius and volume, i
    6·2 answers
  • The cheerleading squad is making posters. They have 3 different colors of poster board and 4 different colors of markers. How ma
    15·1 answer
  • Cylinder height of 7 and a radius of 4 cm. How many cubic centimeters of fluid can fill this cylinder
    13·1 answer
  • BASIC PRACTICE<br>Find the GCF of each pair of numbers.<br>(a) 8 and 12 (b) 18 and 27​
    7·1 answer
  • What is the mean absolute deviation for this set 65 95 85 70 70 95 55
    9·2 answers
  • Which of the following relations is a function?
    8·2 answers
  • SOMEONE PLEASE HELP ME ASAP THIS IS ALMOST DUE ILL MARK BRAINLIEST!!!!
    9·1 answer
  • Solve for x, where x is a real number.<br> 10+ x + 3 =4
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!