if its wrong that means you didn't explain it correct tell me if its wrong and ill solve it correctly if you say what's the width, length and height the answer is down below.
Answer: 236 in²
Answer:
6.325
Step-by-step explanation:
This is a refreshing question!
We are given that
f(r)=ar+b, and
Sum f(r) =125 for r=1 to 5
Sum f(r) = 475 for r=1 to 10.
and we know, using Gauss's method, that
G(n)=sum (1,2,3.....n) = n(n+1)/2 or
G(n)=n(n+1)/2
Sum f(r) =125 for r=1 to 5
=>
sum=a(sum of 1 to 5) + 5b => G(5)a+5b=125 [G(5)=15]
15a+5b=125 ...................................................(1)
Similarly, Sum f(r) = 475 for r=1 to 10 => G(10)a+5b=475 [G(10)=55]
=>
55a+10b=475.................................................(2)
Solve system of equations (1) and (2)
(2)-2(1)
55-2(15)a=475-2(125) => 25a=225 =>
a=9
Substitute a=9 in 1 => 15(9)+5b=125 => 5b=-10
b=-2
Substitute a and b into f(r),
f(r)=9r-2
check: sum f(r), r=1,5 = (9-2)+(18-2)+(27-2)+(36-2)+(45-2)=135-10=125 [good]
We define the sum of f(r) for r=1 to n as
S(n)=sum f(r) for r=1 to n = 9(sum 1,2,3....n)-2n = 9n(n+1)/2-2n = 9G(n)-2n
S(n)=9n(n+1)/2-2n
checks:
S(5)=9(15)-2(5)=135-10=125 [good]
S(10)=9(55)-2(10)=495-20=475 [good]
Hence
(a)
S(n)=sum f(r) for r=1,n
= 9(sum i=1,n)+n(-2)
= 9(n(n+1)/2 -2n
=(9(n^2+n)/2) -2n
(b) sum f(r) for i=8,18
=sum f(r) for i=1,18 - sum f(r) for i=1,7
=S(18)-S(7)
=(9(18^2-18)/2-2(18))-(9(7^2-7)/2-2(7))
=1503-238
=1265
What exactly was the purpose of posting this?