Answer:
B - In real world conditions
Makes the most sense.....
The digestive system breaks down food, the respiratory system takes in oxygen, and the cardiovascular system delivers the oxygen and food to the cells.
Answer:
Haemoglobin; liver; binds; stored; bile duct; small intestine; lipids.
Explanation:
Serology can be defined as the study of blood and the reactions between antibodies and antigens in the blood.
In Biology, blood pH can be defined as a measure of the hydrogen ion (H¯) concentration of blood i.e the level of alkalinity or acidity of blood.
Basically, the normal blood pH of a human being should be between 7.35 and 7.45.
Hence, one of the ways in which the body regulates blood pH is with proteins. Proteins help regulate blood pH by accepting and releasing hydrogen ions. Typically, when the blood pH falls, the hydrogen ions (H¯) are accepted (absorbed) while hydrogen ions are released when the blood pH rises.
For example, a protein such as haemoglobin which makes up a composition of the red blood cells, binds an amount of acid required to regulate blood pH.
In the spleen, haemoglobin from red blood cells is broken down to form (unconjugated) bilirubin. Unconjugated bilirubin is insoluble in blood plasma so binds to albumens in the blood and is sent to the liver. Bilirubin binds with glucuronic acid to form conjugated bilirubin. It forms part of the bile, which is stored in the gall bladder. Food in the gut stimulates gall bladder contraction and the bile passes down the bile duct to the small intestine, where it aids in the digestion of lipids.
The mammalian tail and the human coccyx, the leaves of pitcher plants and cacti, are homologous organs while, the flippers of penguins and dolphins, as well as the shells of turtles and crabs are analogous structures.
<h3>What are homologous organs?</h3>
Homologous organs are those that are similar in structure but operate differently. They resulted from divergent evolution.
Divergent evolution occurs when species are closely connected to the same ancestors but develop similar structures that perform different tasks in different environments.
Analogous Organs are organs from various creatures that, despite their appearance, perform the same function.
In the given case, the mammalian tail and coccyx, as well as the leaves of pitcher plants and cacti, are homologous organs, whereas penguin and dolphin flippers, as well as turtle and crab shells, are analogous structures.
Thus, these are the different instances of homologous and analogous organs.
For more details regarding homologous structures, visit:
brainly.com/question/1274613
#SPJ1