Answer:
There can be 14,040,000 different passwords
Step-by-step explanation:
Number of permutations to order 3 letters and 2 numbers (total 5)
(AAANN, AANNA,AANAN,...)
= 5! / (3! 2!)
= 120 / (6*2)
= 10
For each permutation, the three distinct (English) letters can be arranged in
26!/(26-3)! = 26!/23! = 26*25*24 = 15600 ways
For each permutation, the two distinct digits can be arranged in
10!/(10-2)! = 10!/8! = 10*9 = 90 ways.
So the total number of distinct passwords is the product of all three permutations,
N = 10 * 15600 * 90 = 14,040,000
Answer:
16
Step-by-step explanation:
Given that:
Length of two sides of the triangle = 1 and 16 ;
The largest possible whole-number length of the third side would be ;
Recall from triangle inequality theorem; the length of any two sides of a triangle is greater than the third side. Therefore. The largest possible whole number value the third side could have is:
Assume the third side is the largest :
Then, the third side must be less than the sum of the other two sides ;
Third side < (16 + 1)
Third side < 17
Therefore, the closest whole number lesser than the sum of the other two sides is (17 - 1) = 16
Answer:
Socratic app
Step-by-step explanation:
it will help you
The answer is 28.26 because to find the area of a circle you need to do pie time radius squared.
Answer:
4 bags
Step-by-step explanation:
lxw
12x10=120
30x4=120
l=length
w=width