Answer:
a) always. b) electric field lines are defined by the path positive test charges travel.
Explanation:
By convention, field lines always follow the direction that it would take a positive test charge (small enough so it can´t disrupt the field created by a charge distribution), under the influence of an electric field, at the same point where the test charge is located.
So any positive charge, subject to an electric field influence, moves along the field line that passes through its current position, in the same way that a positive test charge would.
We could say also that the electric force on a positively charged particle is in the same direction as the electric field that produces that force (due to some charge distribution) , which is true, but it doesn´t explain why.
There is no illustration of the problem provided but I'll attempt to provide an answer.
The relationship between the electric potential difference between two points and the average strength of the electric field between those two points is given by:
║E║ = ΔV/d
║E║ is the magnitude of the average electric field, ΔV is the potential difference between A and B, and d is the distance between A and B.
We are given the following values:
║E║= 10N/C
d = 3m
Plug these values in and solve for ΔV
10 = ΔV/3
ΔV = 30V
Answer:
It would take 8.22037 hrs away. Wouldn't it?
Explanation:
Because
4.11016
4.11016
15
= 8.22037
That would be big fat no as far as i am aware
Things that stretch or compress store elastic potential energy