I<span>n the absence of air resistance, all objects fall with the same acceleration due to gravity.
The acceleration of gravity does not depend on mass of the object
Hope this helps!</span>
<span>The word that musicians use for </span>frequency<span> is </span>pitch<span>. The shorter the wavelength, the higher the </span>frequency<span>, and the higher the </span>pitch<span>, of the </span>sound<span>. In other words, short waves </span>sound<span> high; long waves </span>sound<span> low.</span>
Answer:
The density of the fluid is 1100 kg/m³.
Explanation:
Given that,
Height = 5.00 cm
Pressure at top =594 Pa
Pressure at bottom = 1133 Pa
We need to calculate the change in pressure
Using formula of change in pressure

Where,
= Pressure at bottom
= Pressure at top
put the value into the formula


Using formula of pressure for density


Where,
= density
P = pressure
h = height
Put the value in to the formula


Hence, The density of the fluid is 1100 kg/m³.
Kinetic energy =(1/2) (mass) (speed²)
First object: KE = (1/2) (2 kg) (2m/s)² = 4 joules during the lift.
Second object: KE = (1/2) (4kg) (3 m/s)² = 18 joules during the lift.
The second object has more kinetic energy while it's being lifted
than the first object has while it's being lifted. Once they reach their
final heights and stop, neither object has any kinetic energy.