Answer: B. II and III only
Explanation:
Let’s begin by explianing what energy is: the ability of matter to produce work in the form of movement, light, heat, among others. In this sense, there are several types of energy, but we will talk especifically in this case about <u>kinetic energy</u> and <u>potential energy</u>.
<u>Kinetic energy </u>is the energy an object or body has due to its movement and depends on the mass and velocity of the object or body.
To understande it better: If an object is at rest, its velocity is null and it does not have kinetic energy, however, if the object is moving, then it has kinetic energy.
On the other hand, <u>Potential energy</u> is known as <em>“stored energy”</em> that has the potential to be converted into energy of motion (kinetic energy) or another type of energy (thermal energy, for example). In addition, this energy is related to the work done when a certain force moves an object or body from its natural resting state along a distance to a new position.
So, according to this, Kinetic energy can be transformed into potential energy and Potential energy can be transformed into kinetic energy or any other type of energy. Hence, options II and III are correct.
Answer:
680 J
Explanation:
Mechanical energy = potential energy + kinetic energy
ME = PE + KE
ME = mgh + ½ mv²
ME = (77.1 kg) (9.8 m/s²) (0.90 m) + ½ (77.1 kg) (0 m/s)²
ME = 680 J
Answer:
Electric field acting on the electron is 127500 N/C.
Explanation:
It is given that,
Mass of an electron, 
Charge on electron, 
Initial speed of electron, u = 0
Final speed of electron, 
Distance covered, s = 2 cm = 0.02 m
We need to find the electric field required. Firstly, we will find the acceleration of the electron from third equation of motion as :



According to Newton's law, force acting on the electron is given by :
F = ma


Electric force is given by :
F = q E, E = electric field


E = 127500 N/C
So, the electric field is 127500 N/C. Hence, this is the required solution.
You can make sure there's no change in volume by keeping
your gas in a sealed jar with no leaks. Then you can play with
the temperature and the pressure all you want, and you'll know
that the volume is constant.
For 'ideal' gases,
(pressure) times (volume) is proportional to (temperature).
And if volume is constant, then
(pressure) is proportional to (temperature) .
So if you increase the temperature from 110K to 235K,
the pressure increases to (235/110) of where it started.
(400 kPa) x (235/110) = 854.55 kPa. (rounded)
Obviously, choice-b is the right one, but
I don't know where the .46 came from.
Because of the magnets are actually electromagnetics aka what causes them to repel each other the atoms and the electrons will make a force of them pushing away from each other because the two magnetic poles are not north and south