Answer:
(a)
(b)
(c)
(d)
Solution:
As per the question:
Refractive index of medium 1,
Angle of refraction for medium 1,
Angle of refraction for medium 2,
Now,
(a) The expression for the refractive index of medium 2 is given by using Snell's law:
where
= Refractive Index of medium 2
Now,
(b) The refractive index of medium 2 can be calculated by using the expression in part (a) as:
(c) To calculate the velocity of light in medium 1:
We know that:
Thus for medium 1
(d) To calculate the velocity of light in medium 2:
For medium 2:
Answer:
Explanation:
The lift is going down with acceleration
Initial speed u = 0
Final speed v = 6 m/s
distance s = 15.25 m
acceleration a = ?
v² = u² + 2 a s
6² = 0 + 2 x a x 15.25
a = 1.18 m /s²
Elevator is going down with acceleration .
mg - T = ma where T is tension in the cable .
722 x 9.8 - T = 722 x 1.18
7075.6 - T = 851.96
T = 6223.64 N .
The pet store would be the reference point because it is where he started and it will not move. Hope this helped.
Answer:
(a) Yes, it is possible by raising the object to a greater height without acceleration.
Explanation:
The work-energy theorem states that work done on an object is equal to the change in kinetic energy, and change in kinetic energy requires a change in velocity.
If kinetic energy will not change, then velocity will not change, this means that there will be constant velocity and an object with a constant velocity is not accelerating.
If the object is not accelerating (without acceleration) and it remains at the same height (change in height = 0, and mgh = 0).
Thus, for work to be done on the object, without changing the kinetic energy of the object, the object must be raised to a greater height without acceleration.
Correct option is " (a) Yes, it is possible by raising the object to a greater height without acceleration".