1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ziro4ka [17]
3 years ago
13

How do I add 1475.48+14.98?​

Mathematics
1 answer:
Llana [10]3 years ago
4 0

Answer:1490

Step-by-step explanation:so while solving this question, you want to make sure the decimals are on top of each other. 8+8 is 16 so you write 6 and carry 1. 4+9 is 13 +1 =14, write 4 carry one across the decimals. 5+4 is 9 plus 1 equals 10 write zero carry 1. 7+1 is 8 plus 1 is 9 so you write that down and since 1 and 4 have no numbers under them, you write it down too giving you 1490.46

You might be interested in
The angle of the roof is 56 she built the doll house with a scale of 1:4 what is it measured
umka2103 [35]
56* angles scale regardless of size 90* @ 9mmx9mm is still 90* in 9kmx9km
6 0
3 years ago
The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012)
Wittaler [7]

Answer:

Yes, there is a difference between the population mean for the math scores and the population mean for the writing scores.

Test Statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1 .

Step-by-step explanation:

We are provided with the sample data showing the math and writing scores for a sample of twelve students who took the SAT ;

Let A = Math Scores ,B = Writing Scores  and D = difference between both

So, \mu_A = Population mean for the math scores

       \mu_B = Population mean for the writing scores

 Let \mu_D = Difference between the population mean for the math scores and the population mean for the writing scores.

            <em>  Null Hypothesis, </em>H_0<em> : </em>\mu_A = \mu_B<em>     or   </em>\mu_D<em> = 0 </em>

<em>      Alternate Hypothesis, </em>H_1<em> : </em>\mu_A \neq  \mu_B<em>      or   </em>\mu_D \neq<em> 0</em>

Hence, Test Statistics used here will be;

            \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1    where, Dbar = Bbar - Abar

                                                               s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}

                                                               n = 12

Student        Math scores (A)          Writing scores (B)         D = B - A

     1                      540                            474                                   -66

     2                      432                           380                                    -52  

     3                      528                           463                                    -65

     4                       574                          612                                      38

     5                       448                          420                                    -28

     6                       502                          526                                    24

     7                       480                           430                                     -50

     8                       499                           459                                   -40

     9                       610                            615                                       5

     10                      572                           541                                      -31

     11                       390                           335                                     -55

     12                      593                           613                                       20  

Now Dbar = Bbar - Abar = 489 - 514 = -25

 Bbar = \frac{\sum B_i}{n} = \frac{474+380+463+612+420+526+430+459+615+541+335+613}{12}  = 489

 Abar =  \frac{\sum A_i}{n} = \frac{540+432+528+574+448+502+480+499+610+572+390+593}{12} = 514

 ∑D_i^{2} = 22600     and  s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}} = \sqrt{\frac{22600 - 12*(-25)^{2} }{12-1} } = 37.05

So, Test statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1

                            = \frac{-25 - 0}{\frac{37.05}{\sqrt{12} } } follows t_1_1   = -2.34

<em>Now at 5% level of significance our t table is giving critical values of -2.201 and 2.201 for two tail test. Since our test statistics doesn't fall between these two values as it is less than -2.201 so we have sufficient evidence to reject null hypothesis as our test statistics fall in the rejection region .</em>

Therefore, we conclude that there is a difference between the population mean for the math scores and the population mean for the writing scores.

8 0
3 years ago
Transpose v= u + t for t
LiRa [457]
Uv al dt or trace mcsorely
4 0
3 years ago
Which point is the vertex of the graph defined by f(x) = 6|x − 2| − 5
bearhunter [10]
(2,-5) https://www.mathpapa.com/algcalc2/?utm_expid=69051716-16.tNCYGchyRSmAD_peBBMf2Q.1&utm_referrer=https...
6 0
3 years ago
Read 2 more answers
Write -4i+(1/4-5i)-(-3/4+8i)+17i as a complex number in the standard for
KatRina [158]

Answer:

1+ 0i

Step-by-step explanation:

A complex number is a number which has some real part and some imaginary part.

Standard form of a complex number is represented as

a +bi

Where a is the real part,

and bi is the imaginary part.

And i = \sqrt{-1}

Given complex number:

-4i+\dfrac{1}{4}-5i)-(-\dfrac{3}{4}+8i)+17i\\\Rightarrow -4i+\dfrac{1}{4}-5i + \dfrac{3}{4}-8i+17i\\\Rightarrow  \dfrac{3}{4}+\dfrac{1}{4}-4i -5i-8i+17i\\\Rightarrow  \dfrac{3+1}{4}-17i+17i\\\Rightarrow \dfrac{4}{4}+0i\\\Rightarrow 1 + 0i

Hence, the standard form is 1+ 0i.

8 0
3 years ago
Other questions:
  • Find the value of x <br> (5x+12) (3x+8) <br> a 10 <br> b 15 <br> c 20 <br> d 25
    12·2 answers
  • Given h(t)=-2(t+5) squared +4, find h(-8)
    11·2 answers
  • I need help pick only 4 questions
    12·1 answer
  • Brainliest for whoever answers this correctly
    6·1 answer
  • What is 10 seconds in 29 hours
    7·1 answer
  • Amanda has a jar full of marbles. The probability of randomly selecting a blue marble is 1/18 , a red marble is 1/9, a green mar
    11·2 answers
  • The base of a parallelogram is 3 times the parallelogram's height.
    14·2 answers
  • Need help plsssssssss
    11·1 answer
  • Can someone please help me asap ill mark brainlist + extra points!!!!!!
    9·2 answers
  • I need help 1 last time and I'm done with my quiz
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!