Answer:
The probability that the demand will exceed 190 cfs during the early afternoon on a randomly selected day is ![P(Y>190)=\frac{1}{e^{\frac{19}{10}}}\approx 0.1496](https://tex.z-dn.net/?f=P%28Y%3E190%29%3D%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B19%7D%7B10%7D%7D%7D%5Capprox%200.1496)
Step-by-step explanation:
Let Y be the water demand in the early afternoon.
If the random variable Y has density function f (y) and a < b, then the probability that Y falls in the interval [a, b] is
![P(a\leq Y \leq b)=\int\limits^a_b {f(y)} \, dy](https://tex.z-dn.net/?f=P%28a%5Cleq%20Y%20%5Cleq%20b%29%3D%5Cint%5Climits%5Ea_b%20%7Bf%28y%29%7D%20%5C%2C%20dy)
A random variable Y is said to have an exponential distribution with parameter
if and only if the density function of Y is
![f(y)=\left \{ {{\frac{1}{\beta}e^{-\frac{y}{\beta} }, \quad{0\:\leq \:y \:\leq \:\infty} } \atop {0}, \quad elsewhere} \right.](https://tex.z-dn.net/?f=f%28y%29%3D%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7B1%7D%7B%5Cbeta%7De%5E%7B-%5Cfrac%7By%7D%7B%5Cbeta%7D%20%7D%2C%20%5Cquad%7B0%5C%3A%5Cleq%20%5C%3Ay%20%5C%3A%5Cleq%20%5C%3A%5Cinfty%7D%20%20%20%7D%20%5Catop%20%7B0%7D%2C%20%5Cquad%20elsewhere%7D%20%5Cright.)
If Y is an exponential random variable with parameter β, then
mean = β
To find the probability that the demand will exceed 190 cfs during the early afternoon on a randomly selected day, you must:
We are given the mean = β = 100 cubic feet per second
![P(Y>190)=\int\limits^{\infty}_{190} {\frac{1}{100}e^{-y/100} } \, dy](https://tex.z-dn.net/?f=P%28Y%3E190%29%3D%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B190%7D%20%7B%5Cfrac%7B1%7D%7B100%7De%5E%7B-y%2F100%7D%20%7D%20%5C%2C%20dy)
Compute the indefinite integral ![\int \frac{1}{100}e^{-\frac{y}{100}}dy](https://tex.z-dn.net/?f=%5Cint%20%5Cfrac%7B1%7D%7B100%7De%5E%7B-%5Cfrac%7By%7D%7B100%7D%7Ddy)
![\frac{1}{100}\cdot \int \:e^{-\frac{y}{100}}dy\\\\\mathrm{Apply\:u \:substitution}\:u=-\frac{y}{100}\\\\\frac{1}{100}\cdot \int \:-100e^udu\\\\\frac{1}{100}\left(-100\cdot \int \:e^udu\right)\\\\\frac{1}{100}\left(-100e^u\right)\\\\\mathrm{Substitute\:back}\:u=-\frac{y}{100}\\\\\frac{1}{100}\left(-100e^{-\frac{y}{100}}\right)\\\\-e^{-\frac{y}{100}}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B100%7D%5Ccdot%20%5Cint%20%5C%3Ae%5E%7B-%5Cfrac%7By%7D%7B100%7D%7Ddy%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3Au%20%5C%3Asubstitution%7D%5C%3Au%3D-%5Cfrac%7By%7D%7B100%7D%5C%5C%5C%5C%5Cfrac%7B1%7D%7B100%7D%5Ccdot%20%5Cint%20%5C%3A-100e%5Eudu%5C%5C%5C%5C%5Cfrac%7B1%7D%7B100%7D%5Cleft%28-100%5Ccdot%20%5Cint%20%5C%3Ae%5Eudu%5Cright%29%5C%5C%5C%5C%5Cfrac%7B1%7D%7B100%7D%5Cleft%28-100e%5Eu%5Cright%29%5C%5C%5C%5C%5Cmathrm%7BSubstitute%5C%3Aback%7D%5C%3Au%3D-%5Cfrac%7By%7D%7B100%7D%5C%5C%5C%5C%5Cfrac%7B1%7D%7B100%7D%5Cleft%28-100e%5E%7B-%5Cfrac%7By%7D%7B100%7D%7D%5Cright%29%5C%5C%5C%5C-e%5E%7B-%5Cfrac%7By%7D%7B100%7D%7D)
Compute the boundaries
![\int _{190}^{\infty \:}\frac{1}{100}e^{-\frac{y}{100}}dy=0-\left(-\frac{1}{e^{\frac{19}{10}}}\right)](https://tex.z-dn.net/?f=%5Cint%20_%7B190%7D%5E%7B%5Cinfty%20%5C%3A%7D%5Cfrac%7B1%7D%7B100%7De%5E%7B-%5Cfrac%7By%7D%7B100%7D%7Ddy%3D0-%5Cleft%28-%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B19%7D%7B10%7D%7D%7D%5Cright%29)
![\int _{190}^{\infty \:}\frac{1}{100}e^{-\frac{y}{100}}dy=\frac{1}{e^{\frac{19}{10}}}\approx 0.1496](https://tex.z-dn.net/?f=%5Cint%20_%7B190%7D%5E%7B%5Cinfty%20%5C%3A%7D%5Cfrac%7B1%7D%7B100%7De%5E%7B-%5Cfrac%7By%7D%7B100%7D%7Ddy%3D%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B19%7D%7B10%7D%7D%7D%5Capprox%200.1496)
The probability that the demand will exceed 190 cfs during the early afternoon on a randomly selected day is ![P(Y>190)=\frac{1}{e^{\frac{19}{10}}}\approx 0.1496](https://tex.z-dn.net/?f=P%28Y%3E190%29%3D%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B19%7D%7B10%7D%7D%7D%5Capprox%200.1496)