1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dedylja [7]
3 years ago
9

Jordan is considering buying her first home. The house she is interested in buying is priced at $169,000. Jordan qualifies for a

30-year mortgage at 5.95%. What will be her monthly mortgage payment?
Mathematics
1 answer:
stepladder [879]3 years ago
9 0
Its 1007.81 feedback
You might be interested in
In a random sample of 150 customers of a high-speed Internetprovider, 63 said that their service had been interrupted one ormore
erastovalidia [21]

Answer:

a) The 95% confidence interval would be given by (0.341;0.499)

b) The 99% confidence interval would be given by (0.316;0.524)

c) n=335

d)n=649

Step-by-step explanation:

1) Notation and definitions

X_{IS}=63 number of high speed internet users that had been interrupted one or more times in the past month.

n=150 random sample taken

\hat p_{IS}=\frac{63}{150}=0.42 estimated proportion of high speed internet users that had been interrupted one or more times in the past month.

p_{IS} true population proportion of high speed internet users that had been interrupted one or more times in the past month.

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

The margin of error is the range of values below and above the sample statistic in a confidence interval.

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The population proportion have the following distribution

p \sim N(p,\sqrt{\frac{\hat p(1-\hat p)}{n}})

1) Part a

In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 95% of confidence, our significance level would be given by \alpha=1-0.95=0.05 and \alpha/2 =0.025. And the critical value would be given by:

t_{\alpha/2}=-1.96, t_{1-\alpha/2}=1.96

The confidence interval for the mean is given by the following formula:

\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}

If we replace the values obtained we got:

0.42 - 1.96\sqrt{\frac{0.42(1-0.42)}{150}}=0.341

0.42 + 1.96\sqrt{\frac{0.42(1-0.42)}{150}}=0.499

The 95% confidence interval would be given by (0.341;0.499)

2) Part b

In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 99% of confidence, our significance level would be given by \alpha=1-0.99=0.01 and \alpha/2 =0.005. And the critical value would be given by:

t_{\alpha/2}=-2.58, t_{1-\alpha/2}=2.58

The confidence interval for the mean is given by the following formula:

\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}

If we replace the values obtained we got:

0.42 - 2.58\sqrt{\frac{0.42(1-0.42)}{150}}=0.316

0.42 + 2.58\sqrt{\frac{0.42(1-0.42)}{150}}=0.524

The 99% confidence interval would be given by (0.316;0.524)

3) Part c

The margin of error for the proportion interval is given by this formula:

ME=z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}    (a)

And on this case we have that ME =\pm 0.05 and we are interested in order to find the value of n, if we solve n from equation (a) we got:

n=\frac{\hat p (1-\hat p)}{(\frac{ME}{z})^2}   (b)

And replacing into equation (b) the values from part a we got:

n=\frac{0.42(1-0.42)}{(\frac{0.05}{1.96})^2}=374.32

And rounded up we have that n=335

4) Part d

The margin of error for the proportion interval is given by this formula:

ME=z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}    (a)

And on this case we have that ME =\pm 0.05 and we are interested in order to find the value of n, if we solve n from equation (a) we got:

n=\frac{\hat p (1-\hat p)}{(\frac{ME}{z})^2}   (b)

And replacing into equation (b) the values from part a we got:

n=\frac{0.42(1-0.42)}{(\frac{0.05}{2.58})^2}=648.599

And rounded up we have that n=649

5 0
3 years ago
I need help please <br>​
Triss [41]
She paid $3.28 per gallon.

24.60 divided by 7.5 equals 3.28.
8 0
3 years ago
1
Gnesinka [82]

Answer:

18

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Find the maximum volume of a rectangular box that is inscribed in a sphere of radius r.
zvonat [6]

Answer:

The maximum volume of a box inscribed in a sphere of radius r is a cube with volume \frac{8r^3}{3\sqrt{3}}.

Step-by-step explanation:

This is an optimization problem; that means that given the constraints on the problem, the answer must be found without assuming any shape of the box. That feat is made through the power of derivatives, in which all possible shapes are analyzed in its equation and the biggest -or smallest, given the case- answer is obtained. Now, 'common sense' tells us that the shape that can contain more volume is a symmetrical one, that is, a cube. In this case common sense is correct, and the assumption can save lots of calculations, however, mathematics has also shown us that sometimes 'common sense' fails us and the answer can be quite unintuitive. Therefore, it is best not to assume any shape, and that's how it will be solved here.

The first step of solving a mathematics problem (after understanding the problem, of course) is to write down the known information and variables, and make a picture if possible.

The equation of a sphere of radius r is x^2 + y^2 + z^2=r^2. Where x, y and z are the distances from the center of the sphere to any of its points in the border. Notice that this is the three-dimensional version of Pythagoras' theorem, and it means that a sphere is the collection of coordinates in which the equation holds for a given radius, and that you can treat this spherical problem in cartesian coordinates.

A box that touches its corners with the sphere with arbitrary side lenghts is drawn, and the distances from the center of the sphere -which is also the center of the box- to each cartesian axis are named x, y and z; then, the complete sides of the box are measured  2x,  2y and 2z. The volume V of any rectangular box is given by the product of its sides, that is, V=2x\cdot 2y\cdot 2z=8xyz.

Those are the two equations that bound the problem. The idea is to optimize V in terms of r, therefore the radius of the sphere must be introduced into the equation of the volumen of the box so that both variables are correlated. From the equation of the sphere one of the variables is isolated: z^2=r^2-x^2 - y^2\quad \Rightarrow z= \sqrt{r^2-x^2 - y^2}, so it can be replaced into the other: V=8xy\sqrt{r^2-x^2 - y^2}.

But there are still two coordinate variables that are not fixed and cannot be replaced or assumed. This is the point in which optimization kicks in through derivatives. In this case, we have a cube in which every cartesian coordinate is independent from each other, so a partial derivative is applied to each coordinate independently, and then the answer from both coordiantes is merged into a single equation and it will hopefully solve the problem.

The x coordinate is treated first: \frac{\partial V}{\partial x} =\frac{\partial 8xy\sqrt{r^2-x^2 - y^2}}{\partial x}, in a partial derivative the other variable(s) is(are) treated as constant(s), therefore the product rule is applied: \frac{\partial V}{\partial x} = 8y\sqrt{r^2-x^2 - y^2}  + 8xy \frac{(r^2-x^2 - y^2)^{-1/2}}{2} (-2x) (careful with the chain rule) and now the expression is reorganized so that a common denominator is found \frac{\partial V)}{\partial x} = \frac{8y(r^2-x^2 - y^2)}{\sqrt{r^2-x^2 - y^2}}  - \frac{8x^2y }{\sqrt{r^2-x^2 - y^2}} = \frac{8y(r^2-2x^2 - y^2)}{\sqrt{r^2-x^2 - y^2}}.

Since it cannot be simplified any further it is left like that and it is proceed to optimize the other variable, the coordinate y. The process is symmetrical due to the equivalence of both terms in the volume equation. Thus, \frac{\partial V}{\partial y} = \frac{8x(r^2-x^2 - 2y^2)}{\sqrt{r^2-x^2 - y^2}}.

The final step is to set both partial derivatives equal to zero, and that represents the value for x and y which sets the volume V to its maximum possible value.

\frac{\partial V}{\partial x} = \frac{8y(r^2-2x^2 - y^2)}{\sqrt{r^2-x^2 - y^2}} =0 \quad\Rightarrow r^2-2x^2 - y^2=0 so that the non-trivial answer is selected, then r^2=2x^2+ y^2. Similarly, from the other variable it is obtained that r^2=x^2+2 y^2. The last equation is multiplied by two and then it is substracted from the first, r^2=3 y^2\therefore y=\frac{r}{\sqrt{3}}. Similarly, x=\frac{r}{\sqrt{3}}.

Steps must be retraced to the volume equation V=8xy\sqrt{r^2-x^2 - y^2}=8\frac{r}{\sqrt{3}}\frac{r}{\sqrt{3}}\sqrt{r^2-\left(\frac{r}{\sqrt{3}}\right)^2 - \left(\frac{r}{\sqrt{3}}\right)^2}=8\frac{r^2}{3}\sqrt{r^2-\frac{r^2}{3} - \frac{r^2}{3}} =8\frac{r^2}{3}\sqrt{\frac{r^2}{3}}=8\frac{r^3}{3\sqrt{3}}.

6 0
3 years ago
The original price for a jacket was 124.95. It is on sale for 20% off. Witch of the following gives the best estimate of the sav
d1i1m1o1n [39]
20% of 124.95 is close to $125 so that is equal of 12.50 of 10% so multiply by 2 which is $25.00 so the estimate discount of the jacket will be $25.00
7 0
3 years ago
Read 2 more answers
Other questions:
  • How many atoms of carbon are in a single molecule of sugar?
    14·1 answer
  • a house cost 120,000 whenit was purchased. the value of the house by each year find the growth of each month
    7·1 answer
  • Please help me please
    8·2 answers
  • At a supermarket in France, the price of apples is 2.50 euros per kilogram. Suppose the exchange rate is 1 euro =$1.34. Whoa is
    11·1 answer
  • Geometry help will give brainliest
    14·1 answer
  • Every Saturday morning,Shaun mows 3 lawns 6 hours at this rate how many hours will it take him to mow 78 lawns (please solve thi
    15·1 answer
  • WILL GIVE BRAINLIEST which of the following is a solution to <img src="https://tex.z-dn.net/?f=tanx%2B%5Csqrt%7B3%7D%20%3D0" id=
    12·1 answer
  • What is the equation of the line if the line passes through (4, 4) and the y-intercept is −4.​
    15·2 answers
  • F(r) = -(1 – 12)(r + 3)<br> What are the zeros of the function
    11·1 answer
  • Can someone please answer please ​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!