Answer:
The values of x for which the model is 0 ≤ x ≤ 3
Step-by-step explanation:
The given function for the volume of the shipping box is given as follows;
V = 2·x³ - 19·x² + 39·x
The function will make sense when V ≥ 0, which is given as follows
When V = 0, x = 0
Which gives;
0 = 2·x³ - 19·x² + 39·x
0 = 2·x² - 19·x + 39
0 = x² - 9.5·x + 19.5
From an hint obtained by plotting the function, we have;
0 = (x - 3)·(x - 6.5)
We check for the local maximum as follows;
dV/dx = d(2·x³ - 19·x² + 39·x)/dx = 0
6·x² - 38·x + 39 = 0
x² - 19/3·x + 6.5 = 0
x = (19/3 ±√((19/3)² - 4 × 1 × 6.5))/2
∴ x = 1.288, or 5.045
At x = 1.288, we have;
V = 2·1.288³ - 19·1.288² + 39·1.288 ≈ 22.99
V ≈ 22.99 in.³
When x = 5.045, we have;
V = 2·5.045³ - 19·5.045² + 39·5.045≈ -30.023
Therefore;
V > 0 for 0 < x < 3 and V < 0 for 3 < x < 6.5
The values of x for which the model makes sense and V ≥ 0 is 0 ≤ x ≤ 3.
Option 3:
m∠ABC = 66°
Solution:
Given
and ABH is a transversal line.
m∠FAB = 48° and m∠ECB = 18°
m∠ECB = m∠HCB = 18°
<u>Property of parallel lines:
</u>
<em>If two parallel lines cut by a transversal, then the alternate interior angles are equal.</em>
m∠FAB = m∠BHC
48° = m∠BHC
m∠BHC = 48°
<u>Exterior angle of a triangle theorem:
</u>
<em>An exterior angle of a triangle is equal to the sum of the opposite interior angles.</em>
m∠ABC = m∠BHC + m∠HCB
m∠ABC = 48° + 18°
m∠ABC = 66°
Option 3 is the correct answer.
Answer:
The three numbers are 341, 342, and 343
Step-by-step explanation:
We start by assigning X to the first integer. Since they are consecutive, it means that the 2nd number will be X + 1 and the 3rd number will be X + 2 and they should all add up to 1026. Therefore, you can write the equation as follows:
(X) + (X + 1) + (X + 2) = 1026
To solve for X, you first add the integers together and the X variables together. Then you subtract three from each side, followed by dividing by 3 on each side. Here is the work to show our math:
X + X + 1 + X + 2 = 1026
3X + 3 = 1026
3X + 3 - 3 = 1026 - 3
3X = 1023
3X/3 = 1023/3
X = 341
Which means that the first number is 341, the second number is 341 + 1 and the third number is 341 + 2. Therefore, three consecutive integers that add up to 1026 are 341, 342, and 343.
341 + 342 + 343 = 1026
We know our answer is correct because 341 + 342 + 343 equals 1026 as displayed above.
The answer is 308 by multiple