Answer:
{ x | -7 ≤ x ≤ 4 }
Step-by-step explanation:
we have point (-6, - 1)
Now we will put these points in each equation,
y = 4x +23
put x = -6 and y = -1
-1 = 4 (-6) +23
-1 = -24 + 23
-1 = -1
LHS = RHS, so this equation has (-6 , -1) as solution.
y = 6x
put x = -6 and y = -1
-1 = 6 (-6)
-1 not= -36
LHS is not equal RHS, so (-6 , -1) is not a solution for that equation,
y = 3x - 5
put x = -6 and y = -1
-1 = 3 (-6) - 5
-1 = -18 - 5
-1 not= -23
LHS is not equal RHS, so (-6 , -1) is not a solution for that equation,
y= 1/6 x
put x = -6 and y = -1
-1 = -6/6
-1 = -1
LHS = RHS, so (-6 , -1) is a solution for that equation,


To solve these type of problems you need to use the pythagoras theorem ⇨ Hypotenuse² = Base² + Altitude².
Here,
- Altitude = 1.6 cm.
- Base = 1.2 cm
- Hypotenuse = x
Now, let's solve for x.
Hypotenuse² = Base² + Altitude²
x² = (1.2)² + (1.6)²
x² = 1.44 + 2.56
x² = 4
x = √4
x = <em><u>2</u></em><em><u>.</u></em>
- So, the value of x is <em><u>2</u><u> </u><u>cm.</u></em>
<h3>
<u>NOTE</u><u> </u><u>:</u><u>-</u></h3>
- Pythagoras theorem can be used only in the cases of right-angled triangles. Here, it's given that the triangle is right angled so we can use this theorem.
- To solve the squares if decimals, take them as whole numbers & then just add the decimal points. For example, ⇨ for (1.2)², take it as 12² , then multiply 12 by 12, you'll get 144. Now, add the decimal place accordingly ⇨ 1.44 . So, (1.2)² = 1.44.
Answer:
10
Step-by-step explanation:
4+5=9 and 1/2+1/2 =1 so 9+1=10
You stop at 2 decimal points. If the 3rd decimal is bigger than 5, add 1 to the 2nd and if it's less than 5, keep it as it is.
For example:
2.663 --> 2.66
6.788 --> 6.79