1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ziro4ka [17]
3 years ago
7

what is the volume of a rectangular prism with a length of 10 inches, width of 12 inches and height of 6 inches

Mathematics
1 answer:
alexdok [17]3 years ago
7 0
The answer would be 720 because you times all sides length times width times height 
You might be interested in
6x2 + 14 - 10x
olchik [2.2K]

\lsrge\text{Hey there!}

\mathsf{6x^2 + 14 - 10x}\\\mathsf{= 6(5)^2 + 14 - 10(5)}\\\mathsf{= 6(\bold{25}) + 14 - 10(5)}\\\mathsf{= \bold{150} + 14 - 10(5)}\\\mathsf{= \bold{164} - 10(5)}\\\mathsf{= 164 - \bf 50}\\\mathsf{= \bf 114}\\\\\large\text{Therefore, your answer is: \huge\boxed{\mathsf{Option\ C. 114}}}\huge\checkmark

\large\text{Good luck on assignment \& enjoy your day!}

~\frak{Amphitrite1040:)}

8 0
2 years ago
Read 2 more answers
The vertex form of the equation of
Phoenix [80]

Answer:

The standard form of the equation is y = 2x^2 + 16x + 25

Step-by-step explanation:

To find the standard form, first square the parenthesis.

y = 2(x + 4)^2 - 7

y = 2(x^2 + -8x + 16) - 7

Now distribute the 2

y = 2(x^2 + 8x + 16) - 7

y = 2x^2 + 16x + 32 - 7

Now combine like terms

y = 2x^2 + 16x + 32 - 7

y = 2x^2 + 16x + 25

6 0
3 years ago
AABC has vertices of A(-2, 2), B(-1, -2), C(-6, 1) and is translated right 7 and up 3.
Sergeu [11.5K]

Answer:

A( 5, 5) B( 6, 1) C( 1, 4)

left and right = x

up and down = y

So for Point A it is -2 + 7 which is 5 and 2 + 3 = 5 so (x,y) = (5,5)

6 0
3 years ago
Read 2 more answers
Prove the following identity <br><br><br> sin x(sec x+cscx)= tan x +1
Alexxandr [17]

Answer:

Step-by-step explanation:

<u>________________________________________________________</u>

<u>FACTS TO KNOW BEFORE SOLVING :-</u>

  • <u></u>\sin x = \frac{1}{cosec \: x} \: \: or \: \: cosex \: x = \frac{1}{\sin x}<u></u>
  • <u></u>\cos x = \frac{1}{\sec x}  \: \:or \: \: \sec x = \frac{1}{\cos x}<u></u>
  • <u></u>\tan x = \frac{\sin x}{\cos x}<u></u>

<u>________________________________________________________</u>

In the question ,

L.H.S. = \sin x (\sec x + cosec \: x)

R.H.S. = \tan x + 1

Lets solve L.H.S. first.

\sin x (\sec x + cosec \: x)

=> \sin x( \frac{1}{\cos x} + \frac{1}{\sin x} )

=> \frac{\sin x}{\cos x} + \frac{\sin x}{\sin x}

=> \tan x + 1

∴ L.H.S. = R.H.S. (Proved)

3 0
3 years ago
Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate the flux of F across S. F(x, y, z) = x
kykrilka [37]

\vec F has divergence

\nabla\cdot\vec F=\dfrac{\partial(xye^z)}{\partial x}+\dfrac{\partial(xy^2z^3)}{\partial y}-\dfrac{\partial(ye^z)}{\partial z}=ye^z+2xyz^3-ye^z=2xyz^3

By the divergence theorem, the integral of \vec F across S is equal to the integral of \nabla\cdot\vec F over the interior of S:

\displaystyle\iiint_S\vec F\cdot\mathrm d\vec S=\int_0^1\int_0^6\int_0^32xyz^3\,\mathrm dx\,\mathrm dy\,\mathrm dz=\boxed{\frac{81}2}

8 0
3 years ago
Other questions:
  • Solve the equation<br> 2 1/3x+7=10/3x−6
    11·2 answers
  • Which is a solution of the inequality?<br>p + 4 – 2(p – 10) &gt; 0
    9·2 answers
  • $5 in a $10 general admission Night o f the Free with Sultos 10 show that Moderneature.com 1 3114111 ALLSTON NATIONAL THEATRE 9.
    5·1 answer
  • Wyatt hiked 6 miles in 2 hours at the same rate what is the total number of miles Wyatt could hike in 9 hours
    13·2 answers
  • CORRECT ANSWERS ONLY PLEASE AND THANK YOU , HELP ME The graph shown below expresses a radical function that can be written in th
    8·1 answer
  • Help...............................
    9·1 answer
  • The diagonal of a quadrilateral
    6·1 answer
  • HELP ASAP!!
    12·1 answer
  • What is 3/4% written as an equivalent fraction? I already got the decimal part, I just need the fraction.
    6·1 answer
  • △ABC ~ △XYZ. Find X. Thanks!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!