Adopting the number of avogrado 6.02 * 10²³ / mol
<span>Sodium chloride (table salt)</span> Molar Mass = 58.44 g / mol
We will first have to find the number of moles in 35 grams of the element, like this:
1 mol ----------------- 58.44 g
X ---------------------- 35 g
58.44 * x = 35 * 1
58.44x = 35

X = 0.598904...
X ≈ 0.60<span> mol </span>
Now we will find how many atoms there are in 0.60 mol of this element, like this:
1 mol -------------------- 6.02 * 10²³ atoms
0.60 mol ----------------- X
X = 0.60 * 6.02 * 10²³
The chemicals are reactive with one another
There are two oxygen atoms
Answer:
thick, insulating fur
Explanation:
If an animal lives in a freezing climate, it makes sense logically that the animal would adapt and develop a layer of thick fur to keep its body insulated and maintain homeostasis.
Hope this helped and please consider a Brainliest! :)
(a) One form of the Clausius-Clapeyron equation is
ln(P₂/P₁) = (ΔHv/R) * (1/T₁ - 1/T₂); where in this case:
Solving for ΔHv:
- ΔHv = R * ln(P₂/P₁) / (1/T₁ - 1/T₂)
- ΔHv = 8.31 J/molK * ln(5.3/1.3) / (1/358.96 - 1/392.46)
(b) <em>Normal boiling point means</em> that P = 1 atm = 101.325 kPa. We use the same formula, using the same values for P₁ and T₁, and replacing P₂ with atmosferic pressure, <u>solving for T₂</u>:
- ln(P₂/P₁) = (ΔHv/R) * (1/T₁ - 1/T₂)
- 1/T₂ = 1/T₁ - [ ln(P₂/P₁) / (ΔHv/R) ]
- 1/T₂ = 1/358.96 K - [ ln(101.325/1.3) / (49111.12/8.31) ]
(c)<em> The enthalpy of vaporization</em> was calculated in part (a), and it does not vary depending on temperature, meaning <u>that at the boiling point the enthalpy of vaporization ΔHv is still 49111.12 J/molK</u>.