The correct answer is 432, and 720.
The thickness of a film is t= 360nm
the refractive index of oil n₀t = (m +1/2) λ
For m =0
λ = 4n₀t
= 4(1.50)(360)
= 2160nm
for m = 1
λ = 4n₀t
= 4(1.50)(360)/3
= 720nm
m = 2
λ = 4n₀t/5 = 4(1.50)(360)/5
= 432nm
The wavelength which are most strongly reflected are
432nm, 720nm.
Answer:
B. counterclockwise
Explanation:
We can solve the problem by using the right-hand rule:
- put your thumb finger of the right hand in the same direction of the current in the wire (upward)
- wrap the other fingers around the thumb
- the direction of the other fingers will give the direction of the magnetic field lines
By doing these steps, we see that the other fingers form concentric circles in a counterclockwise direction (seen from above), so this is the direction of the magnetic field lines.
Using the precise speed of light in a vacuum (

), and your given distance of

, we can convert and cancel units to find the answer. The distance in m, using

, is

. Next, for the speed of light, we convert from s to min, using

, so we divide the speed of light by 60. Finally, dividing the distance between the Sun and Venus by the speed of light in km per min, we find that it is
6.405 min.
Answer:
t = 1.02 s
Explanation:
The computation of the time required is shown below:
The package speed for belt is
= 3 - 1
= 2 m/s
Moreover, the decelerative force would be acted on the block i.e u.m.g
So, the decelerative produced
= 0.2 × 9.81
= 1.962 m/s^2
And, final velocity = 0
v = u - at
here
V = 0 = final velocity
u = 2 m/s
so,
0 = 2 - 1.962 × t
t = 1.02 s
Answer:
a. mechanical; require a medium to travel through
Explanation:
Longitudinal, transverse and surface waves are types of mechanical waves. For example, within the longitudinal waves are the sound waves, which needs a medium to propagate like the air. This is why sound does not travel in a vacuum.
And an example of a transverse wave is the waves that form in the water when a rock is thrown (ripples), these waves need a medium (the water) to propagate.
On the other hand, electromagnetic waves such as light waves do not need a medium to propagate, this is why we can see the light of distant stars because their light travels through the vacuum until it reaches us.
So, the answer is:
Transverse, surface, and longitudinal waves are all mechanical waves because they require a medium to travel through .