Answer:
 Derek's collection :
Mean= 1929
Median= 1930
Range= 54
IQR = 48
MAD= 23.75
 Paul's collection:
Mean= 1929
Median= 1929.5
Range= 15
IQR = 6
MAD= 3.5
Step-by-step explanation:
1950, 1952, 1908, 1902, 1955, 1954, 1901, 1910
Mean is given by:
(1950+1952+ 1908+1902+1955+1954+1901+1910)/8
=1929
 absolute deviation from mean is:
|1950-1929|= 21
|1952-1929|= 23
|1908-1929|= 21
|1902-1929|= 27
|1955-1929|= 26
|1954-1929|= 25
|1901-1929|= 28
|1910-1929|= 19
from the mean of absolute deviation gives the MAD of the data i.e.
(21+23+21+27+26+25+28+`9)/8
23.75
  
:arrange the given data to get the range and median
    1901   1902    1908   1910    1950  1952    1954   1955
The minimum value is: 1901
Maximum value is: 1955
Range is: Maximum value-minimum value
          Range=1955-1901
 Range= 54
median is (1910+1950)/2
1930
    the lower set of data=
   1901   1902    1908   1910
first quartile becomes
1902+1908)/2
Q1=1905
and upper set of data is:
1950  1952    1954   1955
we find the median of the  upper quartile or third quartile is:
1952+1954)/2=1953
Q3-Q1=1953-1905=
IQR=48
  
Paul's collection:
1929, 1935, 1928, 1930, 1925, 1932, 1933, 1920
Mean is given by:
1929+1935+ 1928+ 1930+ 1925+ 1932+1933+1920)/8
1929
 absolute deviation from mean is:
|1929-1929|=0
|1935-1929|= 6
|1928-1929|= 1
|1930-1929|= 1
|1925-1929|= 4
|1932-1929|= 3
|1933-1929|= 4
|1920-1929|= 9
Hence, we get:
MAD=0+6+1+1+4+3+4+9/8
28/8
3.5
 arrange the data in ascending order we get:
1920   1925   1928   1929   1930   1932   1933   1935  
Minimum value= 1920
Maximum value= 1935
Range=  15 (  1935-1920=15 )
The median is between 1929 and 1930
Hence, Median= 1929.5
Also, lower set of data is:
1920   1925   1928   1929  
 the first quartile or upper quartile is 
1925+1928/2
1926.5
and the upper set of data is:
1930   1932   1933   1935  
We have
1932+1933)/2
1932.5
 IQR is calculated as:
Q3-Q1
6