Answer:
Using weighted average method
Statement of equivalent units
                                                    Material    Conversion
                                                     Units         Units
Units transferred out                   19,000       19,000
Add: Closing work-in-progress   <u> 6,000 </u>      <u> 1,800</u>
Average divisor                            <u> 25,000 </u>    <u>20,800</u>
                         Computation of cost per unit
                                                               Material   Conversion
                                                                    $               $
Cost of beginning work-in-progress   10,000      19,000
Cost added                                           <u> 50,000 </u>   <u>112,248</u>
Total cost                                               <u> 60,000 </u>   <u>131,248</u>
Material cost per unit = <u>$60,000</u>
                                          25,000 units
                                     = $2.40 per unit
Conversion cost per unit = <u>$131,248</u>
                                             20,800 units     
                                           = $6.31 per unit
  Value of units transferred out
   Material = 19,000 x $2.40  = $45,600
   Conversion = 19,000 x $6.31 = $119,890
   Value of closing work-in-progress
   Material = 6,000 x $2.40 = $14,400
   Conversion = 1,800 x $6.31 = 11,358
            
Explanation:
In this case, we need to prepare statement of equivalent units in order to ascertain the average divisor. The average divisor is the sum of units transferred out and closing work-in-progress. Then, we will obtain the total cost of material and conversion, which is the aggregate of cost of opening work-in-progress and cost of units added. We will also calculate the cost per unit, which is total cost of material and conversion divided  by average divisor. Finally, the units transferred  and ending work-in-progress will be valued at unit cost of material and conversion.