1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr1967 [171]
3 years ago
13

A bank advertises an interest rate of 4% per year, compounded monthly

Mathematics
1 answer:
Darina [25.2K]3 years ago
4 0

Given :

Interest rate , r = 4 %.

To Find :

The APY .

Solution :

APY is given by :

APY=(1+\dfrac{r}{n})^n-1

Here , r is compound interest and n is number of time compounded .

So ,

APY=(1+\dfrac{r}{n})^n-1\\\\APY=(1+\dfrac{4}{12})^{12}-1\\\\APY=30.57\%

Therefore , APY is 30.57 % .

Hence , this is the required solution .

You might be interested in
Plz help meh on this<br> WIL GIVE BRAINLIEST
Triss [41]

the answer is (a-4)^2

5 0
3 years ago
Read 2 more answers
The regular nonagon has rotational symmetry of which angle measures? Check all that apply.
11111nata11111 [884]
Consider the center of the nonagon. If we join the center to all the vertices, the central angle of 360°, is divided into 9 equal angles, each with a measure of:

360°/9=40°

So to a nonagon rotated 40°, clockwise or counterclockwise, is indistinguishable from the original one. 

similarly if we rotate 80 ° c.wise or c.c.wise 

in general, a nonagon has a rotational symmetry of 40°n,

where n∈{...-3, -2, -1, 0, 1, 2, 3}...

where 40°n, for n negative, means we are rotating clockwise.


Answer: any angle which is a multiple of 40°

8 0
3 years ago
Read 2 more answers
A season has96 home games. If you purchase a season ticket in the bleacher section, what is the cost per game,in dollars, for th
sattari [20]

Answer:

$8.4375 per game

Step-by-step explanation:

From. The picture attached :

Season long Ticket cost for the bleachers sitting area is : $810

Given that the number of home games in a season is 96

The cost per unit of game could be calculated as :

Cost of season long Ticket / number of home games

= $810 / 96

= $8.4375

$8.4375 per game

5 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
One snake caught 121212 mice.
Nata [24]

120657Step-by-step explanation:

6 0
2 years ago
Other questions:
  • 860,000,000,000 written in scientific notation
    7·2 answers
  • Convert 12 pints to quarts.
    12·2 answers
  • Lim as x approaches pi/4:
    14·1 answer
  • You purchased three different stocks. The purchase prices were 6 3/8 dollars, 11 3/8 dollars and 13 5/8 dollars. Convert the fra
    6·1 answer
  • How do you find the x-intercepts using factoring and the zero product property?​
    10·1 answer
  • Mai, Clare, and Noah are making signs to advertise the school dance. It takes Mai 6 minutes to complete a sign, it takes Clare 8
    10·1 answer
  • Can y’all help me on question 40?!
    15·2 answers
  • This is 10 points plz help ( NO LINKS )
    12·2 answers
  • Three cell phones towers can be modeled by the points X(6,0), Y(8,4), and Z(3,9). Determine the location of another cell phone t
    11·1 answer
  • Fine the equation of the line: slope = -2 y-intercept= 5
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!