Using the greatest common factor, it is found that the greatest dimensions each tile can have is of 3 feet.
---------------------------
- The widths of the walls are of <u>27 feet, 18 feet and 30 feet.</u>
- <u>The tiles must fit the width of each wall</u>, thus, the greatest dimension they can have is the greatest common factor of 27, 18 and 30.
To find their greatest common factor, these numbers must be factored into prime factors simultaneously, that is, only being divided by numbers of which all three are divisible, thus:
27 - 18 - 30|3
9 - 6 - 10
No numbers by which all of 9, 6 and 10 are divisible, thus, gcf(27,18,30) = 3 and the greatest dimensions each tile can have is of 3 feet.
A similar problem is given at brainly.com/question/6032811
8a+12b because you multiply 2 by each number. For example 4a times 2 is 8a and 6b times 2 is 12b
Hope that helped :)
The answer is C. Isosceles Triangle .... 2 of the sides are equal
Answer:
x = 30
Step-by-step explanation:
9-x/5=3
Subtract 9 from each side
9-9-x/5=3-9
-x/5 = -6
Multiply each side by -5
-x/5 *-5 = -6*-5
x = 30
Step-by-step explanation: To solve this absolute value inequality,
our goal is to get the absolute value by itself on one side of the inequality.
So start by adding 2 to both sides and we have 4|x + 5| ≤ 12.
Now divide both sides by 3 and we have |x + 5| ≤ 3.
Now the the absolute value is isolated, we can split this up.
The first inequality will look exactly like the one
we have right now except for the absolute value.
For the second one, we flip the sign and change the 3 to a negative.
So we have x + 5 ≤ 3 or x + 5 ≥ -3.
Solving each inequality from here, we have x ≤ -2 or x ≥ -8.