Answer:
Step-by-step explanation:
9.65+0.4=10.05
16.058-1.2=14.858
Answer:
a) 81.5%
b) 95%
c) 75%
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 266 days
Standard Deviation, σ = 15 days
We are given that the distribution of length of human pregnancies is a bell shaped distribution that is a normal distribution.
Formula:

a) P(between 236 and 281 days)

b) a) P(last between 236 and 296)

c) If the data is not normally distributed.
Then, according to Chebyshev's theorem, at least
data lies within k standard deviation of mean.
For k = 2

Atleast 75% of data lies within two standard deviation for a non normal data.
Thus, atleast 75% of pregnancies last between 236 and 296 days approximately.
Answer:
first, arrange the numbers then classify the number into two like if there are 7 numbers classify into three then the middle one will be the median
Answer:


Step-by-step explanation:
<h3><u>Question 6</u></h3>
To find the greatest common factor (GCF), first list the prime factors of each number:
- 42 = 2 × 3 × 7
- 60 = 2 × 2 × 3 × 5
42 and 60 share one 2 and one 3 in common.
Multiply them together to get the GCF: 2 × 3 = 6.
Therefore, 6 is the GCF of 42 and 60.
Divide the numerator and the denominator by the found GCF:

<h3><u>Question 7</u></h3>
To find the greatest common factor (GCF), first list the prime factors of each number:
- 80 = 2 × 2 × 2 × 2 × 5
- 272 = 2 × 2 × 2 × 2 × 17
80 and 272 share four 2s in common.
Multiply them together to get the GCF: 2 × 2 × 2 × 2 = 16.
Therefore, 16 is the GCF of 80 and 272.
Divide the numerator and the denominator by the found GCF:
