Answer:
Q13. y = sin(2x – π/2); y = - 2cos2x
Q14. y = 2sin2x -1; y = -2cos(2x – π/2) -1
Step-by-step explanation:
Question 13
(A) Sine function
y = a sin[b(x - h)] + k
y = a sin(bx - bh) + k; bh = phase shift
(1) Amp = 1; a = 1
(2) The graph is symmetrical about the x-axis. k = 0.
(3) Per = π. b = 2
(4) Phase shift = π/2.
2h =π/2
h = π/4
The equation is
y = sin[2(x – π/4)} or
y = sin(2x – π/2)
B. Cosine function
y = a cos[b(x - h)] + k
y = a cos(bx - bh) + k; bh = phase shift
(1) Amp = 1; a = 1
(2) The graph is symmetrical about the x-axis. k = 0.
(3) Per = π. b = 2
(4) Reflected across x-axis, y ⟶ -y
The equation is y = - 2cos2x
Question 14
(A) Sine function
(1) Amp = 2; a = 2
(2) Shifted down 1; k = -1
(3) Per = π; b = 2
(4) Phase shift = 0; h = 0
The equation is y = 2sin2x -1
(B) Cosine function
a = 2, b = -1; b = 2
Phase shift = π/2; h = π/4
The equation is
y = -2cos[2(x – π/4)] – 1 or
y = -2cos(2x – π/2) - 1
Answer:
<h2>x = -7 or x = 1</h2>
Step-by-step explanation:

Answer:
A) p = 6
Step-by-step explanation:
Given equation:
3(p - 5) = 5p -27
<u />
Apply the <u>Distributive Property of Multiplication over subtraction law</u>:
⇒ 3 · p - 3 · 5 = 5p - 27
⇒ 3p - 15 = 5p - 27
Add 27 to both sides:
⇒ 3p - 15 + 27 = 5p - 27 + 27
⇒ 3p + 12 = 5p
Subtract 3p from both sides:
⇒ 3p - 3p + 12 = 5p - 3p
⇒ 12 = 2p
⇒ 2p = 12
Divide both sides by 2:
⇒ 2p ÷ 2 = 12 ÷ 2
⇒ p = 6
Try this offered solution.Answer: 3/2