Answer: 6x
Work Shown:
For each step, the logs are all base b. This is to save time and hassle of writing tricky notation of having to write the smaller subscript 'b' multiple times. The first rule to use is that log(x^y) = y*log(x) for any base of a logarithm. The second rule is that
meaning that the log base of itself is 1
log(b^(6x)) = 6x*log(b) .... pull down exponent using the first rule above
log(b^(6x)) = 6x*1 .... use the second rule mentioned
log(b^(6x)) = 6x
First, let's calculate the mean and the mean absolute deviation of the first bowler.
FIRST BOWLER: <span>8,5,5,6,8,7,4,7,6
Mean = (Sum of all data)/(Number of data points) = (8+5+5+6+8+7+4+7+6)/9
<em>Mean = 6.222</em>
Mean absolute deviation or MAD = [</span>∑(|Data Point - Mean|]/Number of Data Points
MAD = [|8 - 6.222| + |5 - 6.222| + |5 - 6.222| + |6 - 6.222| + |8 - 6.222| + |7 - 6.222| + |4 - 6.222| + |7 - 6.222| + |6 - 6.222|]/9
<em>MAD = 1.136</em>
SECOND BOWLER: <span>10,6,8,8,5,5,6,8,9
</span>Mean = (Sum of all data)/(Number of data points) = (<span>10+6+8+8+5+5+6+8+9</span>)/9
<em>Mean = 7.222</em>
Mean absolute deviation or MAD = [∑(|Data Point - Mean|]/Number of Data Points
MAD = [|10 - 7.222| + |6 - 7.222| + |8 - 7.222| + |8 - 7.222| + |5 - 7.222| + |5 - 7.222| + |6 - 7.222| + |8 - 7.222| + |9 - 7.222|]/9
<em>MAD = 1.531
</em>
The mean absolute deviation represents the average distance of each data to the mean. Thus, the lesser the value of the MAD is, the more consistent is the data to the mean. <em>B</em><em>etween the two, the first bowler is more consistent.</em>
Answer:
(-x)(x^2 + 4x + 5)
Step-by-step explanation:
You have to factor out the -x from the rest of the expression.