Answer:
<em><u>can</u></em><em><u>'t</u></em><em><u> </u></em><em><u>se</u></em><em><u>e</u></em><em><u> it</u></em><em><u> </u></em><em><u>too</u></em><em><u> </u></em><em><u>sm</u></em><em><u>all</u></em><em><u> </u></em><em><u>ta</u></em><em><u>lk</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>shot</u></em><em><u> </u></em><em><u>lit</u></em><em><u>tle</u></em><em><u> bit</u></em><em><u> </u></em><em><u>clo</u></em><em><u>se</u></em>
Answer:
Rolling case achieves greater height than sliding case
Step-by-step explanation:
For sliding ball:
- When balls slides up the ramp the kinetic energy is converted to gravitational potential energy.
- We have frictionless ramp, hence no loss due to friction.So the entire kinetic energy is converted into potential energy.
- The ball slides it only has translational kinetic energy as follows:
ΔK.E = ΔP.E
0.5*m*v^2 = m*g*h
h = 0.5v^2 / g
For rolling ball:
- Its the same as the previous case but only difference is that there are two forms of kinetic energy translational and rotational. Thus the energy balance is:
ΔK.E = ΔP.E
0.5*m*v^2 + 0.5*I*w^2 = m*g*h
- Where I: moment of inertia of spherical ball = 2/5 *m*r^2
w: Angular speed = v / r
0.5*m*v^2 + 0.2*m*v^2 = m*g*h
0.7v^2 = g*h
h = 0.7v^2 / g
- From both results we see that 0.7v^2/g for rolling case is greater than 0.5v^2/g sliding case.
Answer:
7 15/16
Step-by-step explanation:
find the same denominator which is 16
3/4x4/4 = 12/16
7 3/16+12/16= 7 15/16
probably bad explanation but hope it helps.. :)