Answer:
Yes, without using the distributive property, we get the value for the given expression 2(x - 3) ≤ 10 as x ≤ 8
Step-by-step explanation:
Here, the given expression is:
2(x - 3) ≤ 10
Yes, the given expression can be solved without using the DISTRIBUTIVE Property
Here, consider the given expression:
2(x - 3) ≤ 10
Now, divide the inequality by 2 on both sides, we get:
![\frac{2(x-3)}{2} \leq \frac{10}{2}\\\implies (x - 3) \leq 5](https://tex.z-dn.net/?f=%5Cfrac%7B2%28x-3%29%7D%7B2%7D%20%20%5Cleq%20%20%5Cfrac%7B10%7D%7B2%7D%5C%5C%5Cimplies%20%28x%20-%203%29%20%20%5Cleq%205)
Now adding (+3) on both the sides, we get:
(x - 3) ≤ 5 ⇒ (x - 3 + 3 ) ≤ 5 + 3
or, x ≤ 8
Hence, without using the distributive property, we get the value of x ≤ 8 for the given expression 2(x - 3) ≤ 10