Answer:
The standard error of the mean is 0.0783.
Step-by-step explanation:
The Central Limit Theorem helps us find the standard error of the mean:
The Central Limit Theorem estabilishes that, for a random variable X, with mean
and standard deviation
, a large sample size can be approximated to a normal distribution with mean
and standard deviation
.
The standard deviation of the sample is the same as the standard error of the mean. So
![SE_{M} = \frac{\sigma}{\sqrt{n}}](https://tex.z-dn.net/?f=SE_%7BM%7D%20%3D%20%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D)
In this problem, we have that:
![\sigma = 0.35, n = 20](https://tex.z-dn.net/?f=%5Csigma%20%3D%200.35%2C%20n%20%3D%2020)
So
![SE_{M} = \frac{\sigma}{\sqrt{n}}](https://tex.z-dn.net/?f=SE_%7BM%7D%20%3D%20%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D)
![SE_{M} = \frac{0.35}{\sqrt{20}}](https://tex.z-dn.net/?f=SE_%7BM%7D%20%3D%20%5Cfrac%7B0.35%7D%7B%5Csqrt%7B20%7D%7D)
![SE_{M} = 0.0783](https://tex.z-dn.net/?f=SE_%7BM%7D%20%3D%200.0783)
The standard error of the mean is 0.0783.