Well I don't know !
Let's take a look and see:
The idea is that there could be more than one way
for a roll of the dice to land with the same number.
-- If the sum is from 1-4, you get the point.
There are 6 different ways for a roll of the dice to come up 1-4.
-- If the sum is from 5-8, Adam gets the point.
There are 20 different ways for a roll of the dice to come up 5-8.
-- If the sum is 9-12, Lana gets the point.
There are 10 different ways for a roll of the dice to come up 9-12.
-- The game is not fair to all three of you.
-- Lana has a distinct advantage over you.
-- Adam has a big advantage over Lana.
-- Adam has an even bigger advantage over you.
-- You are at a big disadvantage. (Notice that one of your
numbers ... 1 ... can never come up unless one of the dice
falls off of the table.)
_______________________________
Here's how to figure it:
Ways to roll a 2:
1 ... 1
Ways to roll a 3:
1 ... 2
2 ... 1
Ways to roll a 4:
1 ... 3
2 ... 2
3 ... 1
Ways to roll a 5:
1 ... 4
2 ... 3
3 ... 2
4 ... 1
Ways to roll a 6:
1 ... 5
2 ... 4
3 ... 3
4 ... 2
5 ... 1
Ways to roll a 7:
1 ... 6
2 ... 5
3 ... 4
4 ... 3
5 ... 2
6 ... 1
Ways to roll an 8:
2 ... 6
3 ... 5
4 ... 4
5 ... 3
6 ... 2
Ways to roll a 9:
3 ... 6
4 ... 5
5 ... 4
6 ... 3
Ways to roll a 10:
4 ... 6
5 ... 5
6 ... 4
Ways to roll 11:
5 ... 6
6 ... 5
Ways to roll 12:
6 ... 6
You can try them out and see which one works.
a: f(2) = f(1) +6 = 5+6 = 11 . . . . . . not this one
b: f(1) = f(2) -6 = -1-6 = -7 . . . . . . not this one (5 ≠ -7)
c: f(2) = f(1) - 6 = 5 - 6 = -1 . . . . . this gives the right f(2)
d: f(2 = -6(f(1) = -6(5) = -30 . . . . not this one
_____
The appropriate choice is ...
... f(n +1) = f(n) - 6
— — — — —
You can also recognize that the next term is 6 less than the current one, so f(n+1) = f(n) - 6, which corresponds to the 3rd selection.
I think it’s 21:9 I don’t know but I think that would be the answer
I'm 100% sure of my answer
C,oscar budgets $485 of his monthly income for telephone,utilities, and emergencies.
hope this helps
IN exchange can u mark me as brainlist