Answer:
Domain: All Real Numbers Range: All Real Numbers
Step-by-step explanation:
The domain and range is going to be infinite. The linear function will be using the x and y- axis in order to continue being a function. The y-intercept will be -2 on the y-axis. I recommend using the rise-over-run method for your slope value. from the point (0, -2) on the y-axis. Go up two on the y-axis, and right 7 on the x-axis.
Sorry, it may be difficult to explain through words.
For the first problem, the answer is choice A) 8
The notation "a32", with the "32" as a subscript, means "the address of row 3, column 2". The value that is in row 3, column 2 is the value 8. The row number is always listed first when it comes to addressing in matrices.
---------------------------------------------------------------------------------------
For the second problem, we can only add together matrix A and matrix D, as they are the same size (2x2 matrices). We cannot add any other pairs together because of the size mismatch. In order to add any two matrices, they must have the same number of rows and the same number of columns.
Another example would be adding two 3x1 matrices together. They both have 3 rows and 1 column.
Answer:
40 in²
Step-by-step explanation:
Surface area = 4 triangles + square
= 4[½ × 4 × 3] + 4²
= 4(6) + 16
= 40 in²
Answer:
The y-intercept is about 25.385
Step-by-step explanation:
Calculate slope from difference in y-values divided by difference in x-values.
-15/13 is slope.
Use slope-intercept form.
Y= mx + b
Substitute values from given coordinates for y and x, then solve for b
-60 = -15/13(74) + b
-60 = -85.385 + b
-60 +85.385 = b
25.385 = b
The screenshot atttached shows the graph of this challenging question.
Answer:
x =24
Step-by-step explanation:
Call the angle in the lower right corner y
The outside angles add to 180 degrees for the large triangle
41+ 94+ y = 180
135 + y = 180
y = 180-136
y =45
The small triangle in the lower right also has angles that add to 180
y+ 111+x = 180
45+111+x = 180
156 + x = 180
x = 180-156
x =24