
Substract '-3.4x' at LHS nad the RHS of the above expression.

Add '4' on both LHS and RHs of the above expression.
Answer:
A person must get an IQ score of at least 138.885 to qualify.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

(a). [7pts] What IQ score must a person get to qualify
Top 8%, so at least the 100-8 = 92th percentile.
Scores of X and higher, in which X is found when Z has a pvalue of 0.92. So X when Z = 1.405.




A person must get an IQ score of at least 138.885 to qualify.
Answer:
.00019
Step-by-step explanation:
.00019
first 0: tenths
2nd 0: hundredths
3rd 0: thousandths
4th 1: ten thousandths
5th 9: hundred thousandths
Answer:
not sure which is the origional-
if the big one is the origiinal, then 1/2
if the small one is the origional- then 2-1
9514 1404 393
Answer:
(c) (3, 3)
Step-by-step explanation:
Point E partitions both the x-distance and the y-distance in the ratio 2 : 1. That is, for either the x-coordinates or the y-coordinates, ...
CE : ED = 2 : 1
Try the answers with the x-coordinates.
CE : ED = (1 -(-1)) : (5 - 1) = 2 : 4 . . . . incorrect
CE : ED = (-3 -(-1)) : (5 -(-3)) = -2 : 8 . . . . incorrect
CE : ED = (3 -(-1)) : (5 -3) = 4 : 2 = 2 : 1 . . . . correct
CE : ED = (-1 -(-1)) : (5 -(-1)) = 0 : 6 . . . . incorrect
The only viable choice is (3, 3).
_____
<em>Alternate solution</em>
For a partitioning of m : n, the desired point is ...
E = (n×C +m×D)/(m+n)
For partitioning of 2 : 1, the desired point is ...
E = (1×(-1, -3) + 2×(5, 6))/(2+1) = (-1+10, -3 +12)/3
E = (3, 3)