Answer:
2800000J
Explanation:
Parameters given:
Mass = 920kg, weight = 920 * 9.8 = 9016N
Distance = 310m
Angle of inclination = 6.5°
Work done is given as :
W = F*d*cosA
Where A = angle of inclination
W = (9016 * 310 * cos6.5)
W = 2776993.59J
In 2 significant figures, W = 2800000J
Answer:
v = 31.84 cm/s or 0.318 m/s
the speed of the water leaving the end of the hose is 31.84 cm/s or 0.318 m/s
Explanation:
Given;
Diameter of hose d = 2.76 cm
Volume filled V = 20.0 L = 20,000 cm^3
Time t = 1.45 min = 105 seconds
The volumetric flow rate of water is;
F = V/t = 20,000cm^3 ÷ 105 seconds
F = 190.48 cm^3/s
The volumetric flow rate is equal the cross sectional area of pipe multiply by the speed of flow.
F = Av
v = F/A
Area A = πd^2/4
Speed v = F/(πd^2/4)
v = 4F/πd^2 ......1
Substituting the given values;
v = (4×190.48)/(π×2.76^2)
v = 31.83767439628 cm/s
v = 31.84 cm/s or 0.318 m/s
the speed of the water leaving the end of the hose is 31.84 cm/s or 0.318 m/s
Answer:
M = 175 kg
Explanation:
In the resolution of the harmonic oscillator movement of a system and a mass with a spring, the angular velocity is
w = √ k / m
Where k is the spring constant and m the mass
In this case the mass is the mass of the chair (m) plus the mass of the astronaut (M)
M all = m + M
The angular velocity and the period are related by
w = 2π / T
Substituting
2π / T = √(k/(m + M))
We calculate the astronaut's mass
4π² / T² = k / (m + M)
M = k T² / 4π² - m
M = 569 3.6² /(4π²) - 11
M = 186.8 - 11
M = 175 kg
<span><span>Work from Days:<span><span><span>If A can do a piece of work in n days, then A's 1 day's work =</span></span></span></span><span /></span>

<span><span>Days from Work:<span><span>If A's 1 day's work =</span></span></span></span>

<span><span><span><span>,<span>then A can finish the work in n days</span></span></span></span><span>Ratio:If A is thrice as good a workman as B, then:Ratio of work done by A and B = 3 : 1.Ratio of times taken by A and B to finish a work = 1 : 3.</span></span>