Answer:
Explanation:
In wheel and axle. …with the system is the velocity ratio, or the ratio of the velocity (VF) with which the operator pulls the rope at F to the velocity at which the weight W is raised (VW). This ratio is equal to twice the radius of the large drum divided by the difference…
Complete Question:
A 10 kg block is pulled across a horizontal surface by a rope that is oriented at 60° relative to the horizontal surface.
The tension in the rope is constant and equal to 40 N as the block is pulled. What is the instantaneous power (in W) supplied by the tension in the rope if the block when the block is 5 m away from its starting point? The coefficient of kinetic friction between the block and the floor is 0.2 and you may assume that the block starting at rest.
Answer:
Power = 54.07 W
Explanation:
Mass of the block = 10 kg
Angle made with the horizontal, θ = 60°
Distance covered, d = 5 m
Tension in the rope, T = 40 N
Coefficient of kinetic friction, 
Let the Normal reaction = N
The weight of the block acting downwards = mg
The vertical resolution of the 40 N force, 





Power, 

Explanation:
Displacement is the straight line distance from the starting position to the final position.
Person X walks halfway around circle. So her displacement is 100 m.
Person Y walks 3/4 of the way around. So his displacement is 50√2 m ≈ 70.7 m.
Person Z walks completely around the circle, so their displacement is 0 m.
Therefore:
Z < Y < X
Answer:
The answer is 218
Explanation:
Weight = mass * gravitational acceleration
weight is represented by F
F = 25kg (8.7)
(I'm pretty sure that you don't have to include the meters per second/per second thing)
Answer:
Kinetic energy does not stay the same at all heights
Explanation:
Well as the height and wind increase so does the kinetic energy it's like when you fall as you are about to hit the floor you speed increases
HOPE THIS HELPS YA :)