1). From the frame of reference of a passenger on the airplane looking out of his window, the tree appears to be moving, at roughly 300 miles per hour toward the left of the picture.
2). The SI unit best suited to measuring the height of a building is the meter.
3). 'Displacement' is the straight-line distance and direction from the start-point to the end-point, regardless of the path that was followed to get there.
The ball started out in the child's hand, and it ended up 2 meters away from her in the direction of the wall. So the displacement of the ball from the beginning to the end of the story is: 2 meters toward the wall.
Homeostasis is the state of maintaining steady internal conditions by the living organisms. Cells obtain energy through the process of cellular respiration. It is a metabolic process of conversion of the biochemical energy from the nutrients into adenosine triphosphate (ATP). It also maintains the temperature of the body. The energy produced during this process is used in the cell division and repair of the cells by the breakdown of ATP and maintains homeostasis. They exchange substances with the new cells and also eliminate the wastes thereby maintaining homeostasis.
plz mark me as brainliest :)
Answer:
Distance of Earth from the Sun has nothing to do with the seasons only the tilt is responsible for the change in seasons.
Explanation:
The Earth's tilt does cause the seasons but the distance from the sun and has nothing to do with the change in seasons. In June, when the Northern Hemisphere is tilted in the direction of the Sun during the Northern Hemisphere summer the Earth is actually farthest from the Sun. In January, when the Southern Hemisphere is tilted in the direction of the Sun during the Northern Hemisphere winter the Earth is actually closest to the Sun. This is caused due to the elliptical orbit of the Earth. So, distance of Earth from the Sun has nothing to do with the seasons.
What a delightful little problem !
Here's how I see it:
When 'C' is touched to 'A', charge flows to 'C' until the two of them are equally charged. So now, 'A' has half of its original charge, and 'C' has the other half.
Then, when 'C' is touched to 'B', charge flows to it until the two of <u>them</u> are equally charged. How much is that ? Well, just before they touch, 'C' has half of an original charge, and 'B' has a full one, so 1/4 of an original charge flows from 'B' to 'C', and then each of them has 3/4 of an original charge.
To review what we have now: 'A' has 1/2 of its original charge, and 'B' has 3/4 of it.
The force between any two charges is:
F = (a constant) x (one charge) x (the other one) / (the distance between them)².
For 'A' and 'B', the distance doesn't change, so we can leave that out of our formula.
The original force between them was 3 = (some constant) x (1 charge) x (1 charge).
The new force between them is F = (the same constant) x (1/2) x (3/4) .
Divide the first equation by the second one, and you have a proportion:
3 / F = 1 / ( 1/2 x 3/4 )
Cross-multiply this proportion:
3 (1/2 x 3/4) = F
F = 3/2 x 3/4 = 9/8 = <em>1.125 newton</em>.
That's my story, and I'm sticking to it.