Answer:
B) shrinks
Explanation:
The magnetic force is a force exerted between two magnets, or two magnetic materials, or also on an electric charge moving in a magnetic field.
If we talk about magnetic material, the magnetic field they generates can be represented using a dipole: essentially, they have a north pole (where the lines of the field go out) and a south pole (where the lines of the field go in).
Also, the lines spread apart as we move away from the magnet itself. This means that the strength of the field (and so, the intensity of the force) decreases as we move away from the magnet.
Using this description, we can now understand that when we move the paper clip further from the magnet, the force exerted on the clip decreases, as the magnetic field becomes weaker. So, the correct answer is B.
No, not exactly. They jiggle and tremble and vibrate a lot, but
they always basically stay in very nearly the same place.
It's like if you're allowed to go anywhere you want in your jail cell,
you wouldn't exactly call that "moving about freely".
P=change in E/t
Change in E=p*t
=15*3
=45
The answer is 45J.
Answer:
An object on the moon would weigh the LEAST among these. So correct answer is B.
Explanation:
- Weight of an object on any place is given by:
W = Mass * Acceleration due to gravity(g)
- It means when masses of different objects those are in different places are same, the weight of those objects depends upon the 'g' of that particular place.
- As we know, acceleration due to gravity on surface of moon (g') is 6 times weaker than the acceleration on surface of earth (g), which is due to the large M/R^2 of the earth than the moon.
i.e. g' = g/6 so W' = W/6
- And in the space between the two, the object is weightless.