Answer:
Statements 2, 3, and 6 are true
Step-by-step explanation:
Answer:
Step-by-step explanation:
The scenario is represented in the attached photo. Triangle ABC is formed. AB represents her distance from her base camp. We would determine BC by applying the law of Cosines which is expressed as
a² = b² + c² - 2abCosA
Where a,b and c are the length of each side of the triangle and B is the angle corresponding to b. It becomes
AB² = AC² + BC² - 2(AC × BC)CosC
AB² = 42² + 28² - 2(42 × 28)Cos58
AB² = 1764 + 784 - 2(1176Cos58)
AB² = 2548 - 1246.37 = 1301.63
AB = √1301.63
AB = 36.08 km
To find the bearing, we would determine angle B by applying sine rule
AB/SinC = AC/SinB
36.08/Sin58 = 42/SinB
Cross multiplying, it becomes
36.08SinB = 42Sin58
SinB = 42Sin58/36.08 = 0.987
B = Sin^-1(0.987)
B = 81°
Therefore, her bearing from the base camp is
360 - 81 = 279°
Answer:
-7/30
Step-by-step explanation:
So you need to make the denominators the same number so that you can just subtract the numerators.
(10) 2/3 - (3) 9/10
20/30 - 27/30
-7/30
Answer:
(7,6)
Step-by-step explanation:
Triangle ABC with vertices at points A(4,10), B(10, 10) , and C(10, 2) is a right triangle with the hypotenuse AC.
The circumcenter of the right triangle is the midpoint of the hypotenuse.
Find the coordinates of the midpoint O of the hypotenuse AC:

So, O(7,6)
Answer:
Step-by-step explanation:
Hello!
Your study variable is X: "number of ColorSmart-5000 that didn't need repairs after 5 years of use, in a sample of 390"
X~Bi (n;ρ)
ρ: population proportion of ColorSmart-5000 that didn't need repairs after 5 years of use. ρ = 0.95
n= 390
x= 303
sample proportion ^ρ: x/n = 303/390 = 0.776 ≅ 0.78
Applying the Central Limit Theorem you approximate the distribution of the sample proportion to normal to obtain the statistic to use.
You are asked to estimate the population proportion of televisions that didn't require repairs with a confidence interval, the formula is:
^ρ±
* √[(^ρ(1-^ρ))/n]
=
= 2.58
0.78±2.58* √[(0.78(1-0.78))/390]
0.0541
[0.726;0.834]
With a confidence level of 99% you'd expect that the interval [0.726;0.834] contains the true value of the proportion of ColorSmart-5000 that didn't need repairs after 5 years of use.
I hope it helps!