Answer:
HCl
Explanation:
The best solvent for NaF is a polar liquid. The only liquid having a significant dipole moment among the options is HCl due to the large electro negativity difference between hydrogen and chlorine.
The polar solvent can interact with the NaF via its dipoles such that the NaF dissolves due to ion-dipole interaction.
Answer:
14 mol e⁻
Explanation:
Step 1: Write the balanced half-reaction for the reduction of permanganate to manganese
8 H⁺(aq) + 7 e⁻ + MnO₄⁻(aq) ⇒ Mn(s) + 4 H₂O(l)
Step 2: Calculate the moles corresponding to 110 g of manganese
The molar mass of Mn is 55 g/mol.
110 g × 1 mol/55 g = 2 mol
Step 3: Calculate the number of moles of electrons needed to produce 2 moles of Mn
According to the half-reaction, 7 moles of electrons are required to produce 1 mole of Mn.
2 mol Mn × 7 mol e⁻/1 mol Mn = 14 mol e⁻
Answer:
Explanation:
These instrument works on the analysis of the emisson spectral of light received from the star in this way.
Think of a steel knife in your kitchen. Initially, it has this shiny silver colour that typifies it. When the knife is placed on a hot plate, it becomes hotter and begins to go red as the heating continues. If we stop the heating and pour cold water on it, the red dissapears and our knife is back to itself, although the silvery shine would be lost. This is simply how the atomic absorption spectroscopy works. When you see the hot knife you can say a couple of things about it. Different metals have their various melting point. We can compare the temperature at which our knife will melt with a standard melting point scale to know the type of metal it is made of.
In atomic absorption spectroscopy, an atom gains energy and it becomes excited. Every atom is known to have a peculair amount of absorbant energy that cause them to excite. The more the particles in the atom, the more the energy required. When we analyse the absorbent energy of the atom, it differs from other atoms and we truly identify such an atom even if we don't know it. Most times, the energy is given off as light.
Answer:
Approximately 100 °C.
Explanation:
Hello,
In this case, since the entropy of vaporization is computed in terms of the heat of vaporization and the temperature as:
We can solve for the temperature as follows:
Thus, with the proper units, we obtain:
Hence, answer is approximately 100 °C.
Best regards.