P=2.50x+100
The slope of the function is 2.50 which represents the commission Dylan makes for each computer sale. :)
Answer:
enjooooooooyyyyyyyyyyyyyyyy
Answer:
Perpendicular bisector
Step-by-step explanation:
The construction is of a perpendicular bisector, because the line in bisected and the angle formed by the bisector is a right angle.
Answer: 320°
Step-by-step explanation:
This is a circle geometry.
The arc length of the circle is given to be 8πcm and the radius is 4.5cm.
Now the length of an arc of a circle is
Arc length = πr0°/180° or 2πr0°/360°
To find the angle 0° subtend at the center we equate the arc length with the formula and solve for 0°.Now we go
πr0°/180 = 8π, convert to a simple linear equal and solve for the angle.
πr0° = 8π × 180
0°. = 8π × 180
-----------
π × r
= 8 × 180. 8 × 180
-------- or ---------
9/2. 4.5
= 8 × 180 × 2
------------
9
= 8 × 20 × 2
= 320°
or 8 × 180/4.5
= 1440/4.5
= 320°
Answer:
The calculated χ² = 0.57 does not fall in the critical region χ² ≥ 12.59 so we fail to reject the null hypothesis and conclude the proportion of fatal bicycle accidents in 2015 was the same for all days of the week.
Step-by-step explanation:
1) We set up our null and alternative hypothesis as
H0: proportion of fatal bicycle accidents in 2015 was the same for all days of the week
against the claim
Ha: proportion of fatal bicycle accidents in 2015 was not the same for all days of the week
2) the significance level alpha is set at 0.05
3) the test statistic under H0 is
χ²= ∑ (ni - npi)²/ npi
which has an approximate chi square distribution with ( n-1)=7-1= 6 d.f
4) The critical region is χ² ≥ χ² (0.05)6 = 12.59
5) Calculations:
χ²= ∑ (16- 14.28)²/14.28 + (12- 14.28)²/14.28 + (12- 14.28)²/14.28 + (13- 14.28)²/14.28 + (14- 14.28)²/14.28 + (15- 14.28)²/14.28 + (18- 14.28)²/14.28
χ²= 1/14.28 [ 2.938+ 5.1984 +5.1984+1.6384+0.0784 +1.6384+13.84]
χ²= 1/14.28[8.1364]
χ²= 0.569= 0.57
6) Conclusion:
The calculated χ² = 0.57 does not fall in the critical region χ² ≥ 12.59 so we fail to reject the null hypothesis and conclude the proportion of fatal bicycle accidents in 2015 was the same for all days of the week.
b.<u> It is r</u>easonable to conclude that the proportion of fatal bicycle accidents in 2015 was the same for all days of the week