Digestion of fats occur in duodenum which is a part of small intes tine.
Answer:
When an action potential reaches the end of an axon, the nervous terminal or the varicosities release neurotransmitters. These bind to receptors on the postsynaptic neuron. Eventually, the neurotransmitters are removed from the synapse. Some are reabsorbed by the presynaptic neuron or sending neuron, a process called reuptake, and some are broken down, in a process called enzymatic degradation.
Explanation:
Neurotransmitter liberation occurs from the nervous terminal or varicosities, in the neuronal axon. There are vesicles in the sending neuron that have neurotransmitters in their interior. When an <em>action potential reaches the nervous terminal</em> or the varicosities, it occurs a notable increase in the <em>neurotransmitter liberation</em> by exocytose. This is possible because calcium channels open letting the ion in the cell through the membrane, and letting the neurotransmitter out to the synaptic space. The molecule binds to its receptor in the postsynaptic neuron. This receptor is a <em>protein structure that triggers an answer</em>. As long as the signal molecule is in the synaptic space, it keeps linking to its receptor and causing a postsynaptic answer. <em>To stop this process</em>, the <em>neurotransmitter must be taken out from the synaptic space.</em> There are two mechanisms by which the neurotransmitter can be eliminated:
Enzymatic degradation/deactivation: In the synaptic space, there are <em>specific enzymes that can inactivate the neurotransmitter </em><em>by breaking it down or degrading it</em><em>.</em> In this case, the new molecule won’t be able to bind to the neurotransmitter receptor.
Reuptake: There are receptors located in the presynaptic membrane that can capture de molecule to store it back in new vesicles, for posterior use. These <em>transporters are active transport proteins</em> that easily recognize the neurotransmitter.
Answer:
B)
The exterior of the cell has a net positive charge and the interior has a net negative charge.
Explanation:
Answer:
By preventing the binding of substrate to active site
Explanation:
Competitive inhibitors exhibit a type of reversible inhibition. These are the substances that bind to the binding site of the substrate on the enzyme, that is the active site.
One the competitive inhibitor is bound to the active site on the enzyme, the substrate cannot bind to it and there is no enzyme-substrate complex formation. Hence, the competitive inhibitor inhibits/slow down the enzyme catalysis by occupying the active site of the enzyme and thereby not allowing the substrate to bind to the enzyme.