Check the picture below, so the park looks more or less like so, with the paths in red, so let's find those midpoints.
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad K(\stackrel{x_2}{1}~,~\stackrel{y_2}{3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 1 -3}{2}~~~ ,~~~ \cfrac{ 3 +1}{2} \right) \implies \left(\cfrac{ -2 }{2}~~~ ,~~~ \cfrac{ 4 }{2} \right)\implies JK=(-1~~,~~2) \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20J%28%5Cstackrel%7Bx_1%7D%7B-3%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20K%28%5Cstackrel%7Bx_2%7D%7B1%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%201%20-3%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%203%20%2B1%7D%7B2%7D%20%5Cright%29%20%5Cimplies%20%5Cleft%28%5Ccfrac%7B%20-2%20%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%204%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20JK%3D%28-1~~%2C~~2%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ L(\stackrel{x_1}{5}~,~\stackrel{y_1}{-1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 +5}{2}~~~ ,~~~ \cfrac{ -3 -1}{2} \right) \implies \left(\cfrac{ 4 }{2}~~~ ,~~~ \cfrac{ -4 }{2} \right)\implies LM=(2~~,~~-2) \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20L%28%5Cstackrel%7Bx_1%7D%7B5%7D~%2C~%5Cstackrel%7By_1%7D%7B-1%7D%29%5Cqquad%20M%28%5Cstackrel%7Bx_2%7D%7B-1%7D~%2C~%5Cstackrel%7By_2%7D%7B-3%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%20-1%20%2B5%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-3%20-1%7D%7B2%7D%20%5Cright%29%20%5Cimplies%20%5Cleft%28%5Ccfrac%7B%204%20%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-4%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20LM%3D%282~~%2C~~-2%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

now, let's check the other path, JM and KL
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 -3}{2}~~~ ,~~~ \cfrac{ -3 +1}{2} \right) \implies \left(\cfrac{ -4 }{2}~~~ ,~~~ \cfrac{ -2 }{2} \right)\implies JM=(-2~~,~~-1) \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20J%28%5Cstackrel%7Bx_1%7D%7B-3%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20M%28%5Cstackrel%7Bx_2%7D%7B-1%7D~%2C~%5Cstackrel%7By_2%7D%7B-3%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%20-1%20-3%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-3%20%2B1%7D%7B2%7D%20%5Cright%29%20%5Cimplies%20%5Cleft%28%5Ccfrac%7B%20-4%20%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-2%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20JM%3D%28-2~~%2C~~-1%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ K(\stackrel{x_1}{1}~,~\stackrel{y_1}{3})\qquad L(\stackrel{x_2}{5}~,~\stackrel{y_2}{-1}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 5 +1}{2}~~~ ,~~~ \cfrac{ -1 +3}{2} \right) \implies \left(\cfrac{ 6 }{2}~~~ ,~~~ \cfrac{ 2 }{2} \right)\implies KL=(3~~,~~1) \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20K%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20L%28%5Cstackrel%7Bx_2%7D%7B5%7D~%2C~%5Cstackrel%7By_2%7D%7B-1%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%205%20%2B1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-1%20%2B3%7D%7B2%7D%20%5Cright%29%20%5Cimplies%20%5Cleft%28%5Ccfrac%7B%206%20%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%202%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20KL%3D%283~~%2C~~1%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

so the red path will be 
Answer:

Step-by-step explanation:
Step 1:

Step 2:
Then multiply both by 1000

It cant be simplifyed further so its in simplest form
2+2 equals 4 and 2x2 also equals 4
Answer:
see explanation
Step-by-step explanation:
Under a clockwise rotation about the origin of 90°
a point (x, y ) → (y, - x ) , then
R(2, - 1 ) → R'(- 1, - 2 )
S(4, 0 ) → (0, - 4 )
T(1, 3 ) → T'(3, - 1 )
Answer:
$20.60
Step-by-step explanation:
Price before discount = $21
Discount rate = 10% or 0.1
Discount in dollars = 0.1* 21 = $2.1
Price after discount = $21 -$2.1 = <em>$18.90</em>
If sales tax is 9% or 0.09
amount of tax will be = 0.09 * 18.90 = <em>$1.701</em>
Total price of the phone including taxes = Price before tax + tax amount;
Total price = 18.90 +1.701
= 20.601
Therefore total price will be $20.60