Answer:
read below
Step-by-step explanation:
Alright, archtan /
tan
−
1
(
x
)
is the inverse of tangent. Tan is
sin
cos
. Like the inverse of sin, the inverse of tan is also restricted to quadrants 1 and 4.
Knowing this we are solving for the inverse of tan -1. We are basically being asked the question what angle/radian does tan(-1) equal. Using the unit circle we can see that tan(1)= pi/4.
Since the "Odds and Evens Identity" states that tan(-x) = -tan(x). Tan(-1)= -pi/4.
Knowing that tan is negative in quadrants 2 and 4. the answer is in either of those two quadrants. BUT!!! since inverse of tan is restricted to quadrants 1 and 4 we are left with the only answer -pi/4.
the answer is m=-3n-5/2 or n=2m+5/6

- Given - <u>A </u><u>trapezium</u><u> </u><u>ABCD </u><u>with </u><u>non </u><u>parallel </u><u>sides </u><u>of </u><u>measure </u><u>1</u><u>5</u><u> </u><u>cm </u><u>each </u><u>!</u><u> </u><u>along </u><u>,</u><u> </u><u>the </u><u>parallel </u><u>sides </u><u>are </u><u>of </u><u>measure </u><u>1</u><u>3</u><u> </u><u>cm </u><u>and </u><u>2</u><u>5</u><u> </u><u>cm</u>
- To find - <u>Area </u><u>of </u><u>trapezium</u>
Refer the figure attached ~
In the given figure ,
AB = 25 cm
BC = AD = 15 cm
CD = 13 cm
<u>Construction</u><u> </u><u>-</u>

Now , we can clearly see that AECD is a parallelogram !
AE = CD = 13 cm
Now ,

Now , In ∆ BCE ,

Now , by Heron's formula

Also ,

<u>Since </u><u>we've </u><u>obtained </u><u>the </u><u>height </u><u>now </u><u>,</u><u> </u><u>we </u><u>can </u><u>easily </u><u>find </u><u>out </u><u>the </u><u>area </u><u>of </u><u>trapezium </u><u>!</u>

hope helpful :D
Answer:
0.87 1.0
0.13
Step-by-step explanation:
0.13 dont have a calculator
<span>Line graphs are used to display data or information that changes continuously over time. hope that helped</span>